
A Quick Consensus

by

Andrew Lewis-Pye

January 2026

lewis-pye.com

Contents

1 Introduction 1

2 A simple consensus problem 2

2.1 Exercises . 4

3 The formal framework 5

3.1 Processors . 5

3.2 Message delays . 7

3.3 Faults . 8

3.4 Protocols and executions . 10

3.5 Signatures . 10

3.6 The research programme . 11

4 Byzantine Agreement and Byzantine Broadcast 13

5 The lock-step model with signatures 16

5.1 The Dolev-Strong protocol . 16

5.1.1 Informal discussion: why isn’t it trivial? 16

5.1.2 A formal description of the protocol 18

5.1.3 The verification . 18

5.1.4 Making the protocol more efficient 19

5.1.5 Why do we need other protocols for BB/BA? 19

5.1.6 Exercises . 19

5.2 Proving f + 1 rounds of communication are necessary 20

5.2.1 Defining runs as partial executions 21

5.2.2 Indistinguishable runs and executions 22

5.2.3 Univalent and bivalent runs . 22

5.2.4 The proof of Theorem 5.2 . 23

5.2.5 Exercises . 24

5.3 Quadratic communication is necessary . 24

5.3.1 Exercises . 27

6 The lock-step model without signatures 29

6.1 The proof of Fischer, Lynch and Merritt 29

6.1.1 A revised communication model 29

6.1.2 The case n = 3, f = 1 for the revised communication model 30

i

Contents ii

6.1.3 Back to the standard setup . 31

6.1.4 The proof for general n . 32

6.2 The Phase-King protocol . 32

6.2.1 The Gradecast protocol . 33

6.2.2 Introducing tie-breaking . 34

6.2.3 The formal specification . 35

6.2.4 The verification . 35

6.2.5 Important takeaways . 36

7 State Machine Replication 37

7.1 Total Order Broadcast . 38

7.2 When is TOB solvable? . 39

7.3 Defining State Machine Replication . 40

7.4 When is SMR solvable? . 41

7.5 Reductions between SMR and BA/BB . 42

7.6 Exercises . 44

8 The asynchronous and partially synchronous models 45

8.1 The asynchronous model . 45

8.2 Deterministic consensus is not possible in asynchrony 46

8.2.1 k-runs and pivots . 47

8.2.2 The proof of Theorem 8.1 . 48

8.3 Defining the partially synchronous model 50

8.4 When is consensus possible in partial synchrony? 52

8.5 Exercises . 54

9 Tendermint 55

9.1 Preliminary techniques . 55

9.1.1 Building ‘blockchains’ with collision-free hash functions 55

9.1.2 Quorum intersection arguments . 57

9.2 Tendermint with synchronised clocks . 58

9.2.1 A simple (but failed) attempt . 58

9.2.2 Using two stages of voting (informal analysis) 58

9.2.3 The formal specification . 60

9.2.4 Verifying Consistency and Liveness 62

9.3 Pipelined Tendermint . 64

9.3.1 Verifying Pipelined Tendermint . 64

9.4 Tendermint without synchronised clocks 65

9.4.1 The intuition . 66

9.4.2 The formal specification . 67

9.4.3 Verifying Consistency and Liveness 68

9.5 Tendermint: further analysis . 69

9.5.1 A design principle . 69

9.5.2 Quick block proposals in the good case 70

9.5.3 Block echoing . 70

9.5.4 The Mempool . 70

9.5.5 Threshold signatures . 71

Contents iii

9.5.6 Random leaders . 71

9.6 Exercises . 71

10 SMR metrics 72

10.1 Complexity metrics for SMR . 72

10.1.1 Latency for SMR protocols . 72

10.1.2 Message and communication complexity for SMR protocols 73

10.1.3 Lower bounds . 74

10.1.4 How to weigh these metrics? . 74

10.2 Defining the Mempool task and MSMR 75

10.2.1 Defining the Mempool task . 75

10.2.2 Metrics for mempool protocols . 76

10.2.3 Lower bounds for Mempool metrics 76

10.3 Mempool-SMR (MSMR) . 77

10.3.1 Lower bounds for MSMR . 77

10.4 Analysing efficiency for Tendermint . 78

10.5 Exercises . 78

11 PBFT’s view-change mechanism 79

11.1 PBFT’s view changes: the intuition . 79

11.2 PBFT’s view changes: formal treatment 81

11.2.1 Streamlined PBFT: the formal specification 81

11.2.2 Streamlined PBFT: verifying Consistency and Liveness 83

11.3 Optimistic responsiveness . 85

11.4 Comparing performance for PBFT/Tendermint view changes 85

11.4.1 Communication complexity . 85

11.4.2 Comparing optimistic responsiveness 87

11.5 The original PBFT . 88

11.6 Exercises . 90

12 Using oracles to model cryptographic primitives 91

12.1 Modifying the state-transition-diagram model 91

12.2 Oracle examples . 92

12.2.1 Modelling a threshold signature scheme 92

12.2.2 Modelling a CRS . 93

12.2.3 Modelling a common coin . 93

13 Hotstuff 95

13.1 Extractable SMR . 96

13.2 The intuition behind Hotstuff . 97

13.2.1 Why three stages of voting? . 97

13.2.2 Achieving linear complexity per view 98

13.3 Hotstuff: the formal specification . 99

13.4 Hotstuff: the analysis . 102

13.4.1 Consistency and Liveness . 102

13.4.2 Strong optimistic responsiveness 104

13.4.3 Further considerations . 104

13.5 Exercises . 105

Contents iv

14 View synchronisation protocols 106

15 Protocols for asynchrony 107

16 Combining erasure codes with Reliable Broadcast 108

17 Payment systems 109

18 DAG-based protocols 110

19 Accountability 111

20 Recovery 112

21 Player reconfiguration protocols 113

22 The Pipes model for latency and throughput analysis 114

A Communication complexity for the crash-fault-model 115

B Recursive Phase-King 117

C Bounding complexity for Extractable BA 118

Bibliography 119

Chapter 1

Introduction

To add. What the aim is. Who it’s aimed at. A list of some important things omitted
(with good reason). A brief description of structure (including a ‘fast path’ that could
be taken by a reader who just wants a quick overview, focussing on the methods used
in designing protocols, rather than how to prove impossibility results). A section on
notation? Or perhaps that should be a separate page before the intro, or an appendix?
Explain that we only consider the permissioned setting, and why that’s most of what
you need to know.

1

Chapter 2

A simple consensus problem

[Andy: Modify intro examples?] Modern distributed systems—from cryptocurrency
networks to cloud computing platforms—face a fundamental challenge: how can multiple
independent computers reach agreement when some of them might be faulty or even
malicious? Consider a blockchain network where thousands of nodes must agree on
which transactions to include in the next block, but some nodes might be controlled
by attackers trying to double-spend coins or halt the system. Or imagine a fleet of
autonomous vehicles that need to coordinate their movements, but where some vehicles’
computers might be compromised. These scenarios require protocols that can maintain
agreement despite the presence of malicious behaviour that goes beyond simple crashes
or network failures. To understand how such protocols work, we begin by introducing a
classic problem that captures the essence of this challenge: Byzantine Agreement.

The Byzantine Agreement problem (informal version). As described by Lam-
port, Shostak and Pease [1, 2], who introduced the problem in the early 1980s, the
problem to be solved is as follows. Several divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own general. After observing the
enemy, each general has their own private opinion as to the best plan of action, either
‘retreat’ or ‘attack’. The generals can communicate with one another only by messen-
ger and have to carry out a protocol (a precisely defined communication procedure) to
decide on a common plan of action. The protocol should work whatever their initial
opinions. The difficulty is that some unknown subset of the generals may be dishonest
traitors. While honest generals will carry out the protocol exactly as prescribed, the
dishonest traitors may deviate from the protocol. We have to design the protocol to
meet the following conditions:

1. Termination. Each honest general must eventually reach a decision (retreat or
attack).

2. Agreement. No two honest generals can reach different decisions.

3. Validity. If all honest generals start with the same opinion, then that common
opinion must be the same as their final decision.

Some simple observations. The description of the Byzantine Agreement problem
above is informal. To reason about it formally, we’ll need to give precise answers to
questions such as:

2

3

• How exactly does messaging work? More specifically, do messages always arrive,
and how long does delivery take? Can generals be sure who messages are from?

• How exactly can dishonest generals behave?

In fact, we will see that the circumstances in which it is possible to define a successful
protocol are very sensitive to the precise way in which we answer these questions. Even
with this informal version of the problem, though, there are certain observations that
can be made. We enumerate some below.

(i) It’s easy without the Validity requirement. Without the requirement for
Validity, all honest generals could just ignore their initial opinion and always decide
to attack.

(ii) It’s easy if all generals are honest. To understand a problem better, one can
start by testing boundary cases. Suppose that there are n generals of which at
most f are dishonest. For clarity, let us suppose the honest generals know n and
f (but not which generals are dishonest, or the exact number). Note that, if f = 0
and messages always arrive as intended, then the problem is trivial. For example,
we can just have each general communicate their initial opinion to the others and
then decide according to majority vote (with ties broken in favour of ‘retreat’,
say). So, it’s clear that one of the basic questions we should be interested in is,
“for what values of n and f is a successful protocol possible?”.

(iii) The case f ≥ n/2 is impossible. It’s also easy to see that no protocol can
work if n ≥ 2 and f ≥ n/2. To see this, consider the case n = 2. Then the
reader can extend the argument to the general case (see Exercise 2.1). Suppose
we have a protocol which works when f = 1. Without loss of generality, let us
suppose that, when the first general has initial opinion ‘attack’ and the second has
initial opinion ‘retreat’, the protocol causes both generals to decide to attack if
they behave honestly (a similar argument will apply if they both decide to retreat).
Now consider what happens when both generals have initial opinion ‘retreat’ but
the first is dishonest and behaves during the protocol exactly like they should if
honest with initial opinion ‘attack’, while the second general behaves honestly. In
this case, the protocol must cause both generals to decide to attack, just as in
the first case considered, even though all honest generals started with the initial
opinion ‘retreat’. This contradicts the Validity requirement.

Is the problem trivial when f < n/2? We saw above that the problem is trivially
not solvable when f ≥ n/2. It’s also tempting to think that the problem might be
trivially solvable when f < n/2. For example, can we not just implement a majority
vote argument of the sort described in paragraph (ii) above? The problem with this
approach stems from the allowed form of communication between generals, which is
intended to accurately reflect communication between computing devices in real-world
scenarios. If the generals were standing in a circle and shouting out their votes – so that
everybody can see who is shouting out a vote and any vote heard by a single honest
general is immediately heard by all – then a simple majority vote approach could work.
However, in the setting described in the problem formulation, communication occurs
only by messenger between one pair of generals at a time. The problem now is that,
even if message delivery is perfectly reliable, dishonest generals can tell different things

4

to different generals. For example, suppose that n = 3, call the generals A, B, and C,
and suppose that A and B are honest, while C is dishonest. Suppose A initially wants
to attack, while B wants to retreat. If we carry out a simple majority vote protocol as
described above, and if C sends an ‘attack’ vote to A and a ‘retreat’ vote to B, then
the honest generals will see different majority votes: while A sees a majority of votes
to attack (including their own), B sees a majority of votes to retreat. This means the
honest generals will decide differently, violating Agreement.

In fact, we will see that (under a natural formalisation of the informal problem above)
the Byzantine Agreement problem is not solvable when f ≥ n/3 unless we endow the
generals with certain extra abilities. So, the problem is not as trivial as it might initially
seem. However, to establish impossibility results of this kind, we certainly need a formal
framework. So, that is what we will set up in the next chapter.

2.1 Exercises

Exercise 2.1. In (iii) above, we gave a simple ‘proof’ (for this informal setting) that
no protocol will work if f ≥ n/2, but only for the case n = 2. Extend the argument to
handle all n ≥ 2. What happens for the case n = 1?

Chapter 3

The formal framework

The decisions we have to make in formally defining the setup include such things as how
long messages take to arrive (and whether they are certain to arrive), and what sort of
behaviour the dishonest generals are capable of. We will see that whether it is possible
to define a working consensus protocol is very sensitive to these choices. In fact, the
main difficulty when studying consensus protocols is not that the proofs are particularly
tricky. The difficulty is rather that the results are very sensitive to the precise details of
the setup and the particular problem posed, be it the Byzantine Agreement problem or
some variant. This means one has to keep track of a large number of different possible
setups, problems, and the different corresponding results.

We will formalise protocol participants as computing devices, referred to as processors.1

One aspect of the setup which won’t impact our results, so long as one restricts to
‘reasonable’ options, is the choice of computational model. Since it is probably the
simplest option, we will take the standard approach of modelling processors using state-
transition-diagrams (specified below). If you prefer to think in terms of interactive
Turing machines, or another standard model of computation, that’s fine. You can make
the appropriate modifications to the model we describe below: all of the proofs will go
through essentially unchanged.

3.1 Processors

The processors. We consider a set of n processors Π = {p0, . . . , pn−1}.

Time. Time is divided into discrete time-slots t = 0, 1, 2,

Authenticated channels. Messages are finite binary strings. There exists a two-way
communication channel, called ‘channel {i, j}’, for each pair of distinct processors pi and
pj . The communication channel {i, j} is authenticated in the sense that:

• Only pi can send messages to pj and only pj can send messages to pi on the channel
{i, j}, and;

1The use of the term ‘processor’ is fairly standard. Many papers use the terms ‘replica’, ‘process’,
or ‘node’ instead.

5

6

• When pi receives messages it is aware of the name of the channel by which the
messages were sent, i.e., as we’ll make precise below, the instructions for pi can
depend not only on the messages received at any given time-slot but also which
channels the messages arrived on.

Processors are specified by state-transition-diagrams. This means that, at each
time-slot t, each processor pi begins in some state x and then receives a set of messages
on each of its communication channels {i, j}. Given x and a specification of which set
of messages has arrived on each channel {i, j} at t, the state-transition-diagram then
determines: (a) The message (if any) that pi sends along each channel {i, j} at t, and;
(b) The state in which pi begins time-slot t+ 1. So, according to this model, the state-
transition-diagram for each processor specifies the protocol. There is no requirement
that the state-transition-diagram be finite, i.e., it may contain an infinite number of
states.

To make this concrete, consider a very simple example. Suppose Π = {p0, p1}, and that
the state-transition-diagram for p0 has two states, A and B say. Suppose the state-
transition-diagram for p0 stipulates that, while in state A, p0 should send no messages
and should remain in state A, unless it receives the message 1 from p1. In the latter
case, it should send 1 to p1 and then move to state B. While in state B, the state-
transition-diagram specifies that p0 should not send any messages (whatever is received)
and should remain in this state. If p0 begins in state A at time-slot 0, the result is that
p0 will simply echo the message 1 back to p1 if p1 ever sends it the message 1.

We note that, at a single time-slot, pi can send different messages along different chan-
nels, but can only send one message along each individual channel. The latter require-
ment is not a significant restriction, since we have not limited the length of messages,
so that multiple messages can be combined to form a single message.

The specification above defines deterministic processors: at each time-slot, a processor’s
state and the messages it receives (together with information as to which channels they
arrived on) suffice to entirely specify which messages the processor sends at that time-
slot and the state they are in for the next time-slot. We will assume that processors are
deterministic, unless explicitly stated otherwise. If processors are probabilistic, then the
present state and the messages received at a given time-slot specify a distribution on the
messages sent at that time-slot and the state for the next time-slot.

Inputs and outputs. Certain states of the state-transition-diagram for pi are labelled
as ‘input states’, and pi begins time-slot 0 in one of these input states. The input to pi
determines which input state it starts in. Both the number of processors n and also pi’s
name ‘pi’ are given to pi as part of its input. Certain states are also labelled as ‘output’
states. When processor pi reaches such a state x at time t, its output is determined by
both the state x and the messages it receives at that time.

Now that we’ve defined how processors compute and how they communicate, we need
to specify the timing assumptions - how long do messages take to arrive, and are they
guaranteed to arrive at all?

7

3.2 Message delays

There are a number of different possible assumptions regarding the reliability of message
delivery. To keep things simple, we start by considering two straightforward variants:

• In the lock-step model, messages always arrive at the next time-slot: if pi sends pj
a message at time-slot t then pj receives that message from pi at time-slot t+ 1.

• In the synchronous model, there is some known and finite bound ∆ ≥ 1, given
as input to all processors, such that any message sent at any time-slot t arrives
by time-slot t+∆ at the latest, i.e., the message arrives at some time-slot in the
interval [t+ 1, t+∆].

A point of clarification is required with respect to the synchronous model: a message
m should be received precisely once for each time it is sent. For example, if the only
messages pi sends are m to pj at time-slot t and then (again) m to pj at time-slot t′ > t,
then pj must receive m on the channel {i, j} (exactly) twice by time-slot t′ + ∆, and
should not receive m at later time-slots. In particular, pj may receive m from pi twice
at the same time-slot, so the messages received by pj on a given channel at a given time-
slot are really a multi-set (and the instructions specified by the state-transition-diagram
depend on the multi-set of messages arriving on each channel at a given time-slot).

When we say that a protocol achieves a certain functionality in the synchronous model,
we mean that this is the case for any value of ∆ ≥ 1. In the first few chapters of this
book (until Chapter 8), we will focus on the lock-step model. However:

All of the results we prove for the lock-step model will also hold for the syn-
chronous model.

This is the case because:

(a) Any impossibility result for the lock-step model necessarily holds for the syn-
chronous model, since the lock-step model is a special case of the synchronous
model with ∆ = 1, and;

(b) All of the protocols we consider for the lock-step model can straightforwardly be
modified to handle the weaker assumption that messages arrive within time ∆ by
executing the same instructions only at time-slots that are multiples of ∆.

Since the lock-step and synchronous models may be unrealistic in many real-world sce-
narios, in Chapter 8 we will also formally define the partially synchronous and asyn-
chronous models. Roughly, the partially synchronous model formalises the idea that
message delivery will sometimes be reliable (with a bound on delivery times, as in the
synchronous model), but that there may be periods of unbounded length during which
message delivery is not reliable. In the asynchronous model, messages are always de-
livered,2 but there is no bound on how long delivery may take. The good news, for

2The assumption that messages are always delivered may seem strong. Roughly, protocols such as
TCP achieve something close to this functionality, by using a ‘lower level’ protocol that repeatedly sends
messages until delivery is acknowledged.

8

those who like things simple, is that almost all papers in the literature use either the
lock-step/synchronous, partially synchronous or asynchronous models.3

Our focus: If there is one of these four models that is most important in the context
of direct real-world applications to ‘blockchains’, it is the partially synchronous model.
Generally, one wants protocols that can handle unbounded periods of unreliable message
delivery. On the other hand, the assumptions of the asynchronous model may be seen
as unnecessarily weak in most real-world scenarios of interest. For that reason, when it
comes to possibility results (describing protocols that achieve a certain functionality) this
book will focus (somewhat) on protocols for the partially synchronous model. However,
to develop the theory it is important to consider the lock-step model first. We’ll describe
a number of impossibility results for the lock-step model that carry over directly to the
other models.

Having established our basic model of computation and communication, next we specify
precisely how some processors may deviate from correct behaviour.

3.3 Faults

Processors can either be correct or faulty. Correct processors have a state-transition-
diagram as specified by the protocol, and carry out instructions exactly as it dictates. On
the other hand, there are a number of different possibilities when it comes to allowable
faulty behaviours. Generally, in the context of the ‘blockchain’ literature, we are most
interested in analysing settings where some participants may be trying to ‘attack’ the
protocol, potentially causing it to fail in various ways. Since we can’t be sure what form
these attacks will take, we therefore suppose that faulty processors can behave in an
arbitrary fashion. As specified below, faults of this kind are called Byzantine faults.

The Byzantine fault-model. In the Byzantine fault model, faulty processors may
follow any state-transition-diagram, not necessarily the one specified by the protocol.
To model the fact that faulty processors may also collude, we also allow that the state-
transitions and messages sent by faulty processors can depend on the messages received
by other faulty processors: if pi is faulty, then the messages that pi sends at time-slot t
and the state that it enters for time-slot t + 1 are a function of pi’s state at t and the
multi-set of messages received by each faulty processor on each of their channels at time-
slot t. When considering Byzantine faults, it is common to refer to correct processors
as honest, and faulty processors as Byzantine.

In this book, we will be most concerned with the Byzantine fault-model. We will some-
times consider other fault-models when proving impossibility results (when impossibility
results are just as easily proved for a more restrictive fault-model, we may as well do
so). The two other kinds of faults most commonly considered are crash-faults and
omission-faults. Roughly, processors with crash-faults must behave correctly, except
that they may stop executing instructions at any point of the execution. Processors
with omission-faults may fail to send or receive some messages. While Byzantine faults
model malicious attacks, crash-faults and omission-faults capture more common failure
modes: processors that simply stop working (e.g., due to power failures) or network
partitions that cause message loss.

3Often these ‘models’ are also referred to as ‘settings’. So, one may also refer to the ‘synchronous
setting’, or the ‘partially synchronous setting’.

9

The crash-fault model. In this model, faulty processors have the state-transition-
diagram specified by the protocol and execute instructions correctly, except that they
may crash at some time-slot t. If pi crashes at t, then it may send an arbitrary subset
of the messages that it is instructed to send at t, and pi then performs no further action
at later time-slots (remaining in the state that it was in at time-slot t thereafter, while
sending and receiving no further messages).

The omission-fault model. In this model, faulty processors have the state-transition-
diagram specified by the protocol and execute instructions correctly, except that they
may fail to send or receive messages. Specifically, at each time-slot, a processor p with
omission-faults may take an arbitrary subset of the messages that have arrived on each
channel, and will then act (at that time-slot) exactly like a correct processor that has
received this (potentially reduced) set of messages, except that it may send an arbitrary
subset of the messages that the instructions require it to send on each channel.

The adversary. Especially when considering Byzantine faults, it is common in the
literature to talk in terms of an adversary who controls and co-ordinates all faulty
processors so as to cause problems. For now, you can just see this as a linguistic device,
which facilitates a useful way of thinking. Since protocols have to deal with arbitrary
message delays within the constraints of the model considered (the synchronous, partially
synchronous and asynchronous models give some leeway as to exactly when messages
arrive), it is common also to think of the adversary as controlling message delivery
(within the constraints of the model).

Static, adaptive, and mobile adversaries. Unless explicitly stated otherwise, we
will consider static adversaries, and for now we only formally consider adversaries of this
type. If the adversary is static, this means an unknown set of at most f processors are
faulty from the start of the protocol execution, where f is a known bound. Roughly,
adaptive and mobile adversaries work as follows:

• An adaptive adversary can choose up to f processors to corrupt (make faulty) over
the course of the protocol execution. Processors behave correctly until corrupted,
and then have behaviour dictated by the fault-model (Byzantine, crash or omission-
faults). The adversary may be able to choose which processors to corrupt based on
the inputs of faulty processors and the messages received by all faulty processors
thus far, or we may allow the adversary extra information (such as all inputs and
the messages sent and received by correct processors).

• A mobile adversary can choose any number of processors to make faulty as the
execution progresses, but at most f processors can be faulty at any given time-slot.

Generally, since we may think of the adversary as controlling message delivery, the
distinction between static and adaptive adversaries is not interesting for deterministic
protocols, but can be important for probabilistic protocols. All of our impossibility
results for static adversaries necessarily carry over to the more general case of adaptive
or mobile adversaries. All of our possibility results for static adversaries carry over to
adaptive adversaries, unless explicitly stated otherwise.

Exercise 3.1. In what sense is the distinction between static and adaptive adversaries
not interesting for deterministic protocols?

10

3.4 Protocols and executions

A protocol is just a specification of the state-transition-diagram that should be carried
out by each pi, if correct. An execution is a complete description of:

• The set of processors, their state-transition-diagrams, and their inputs;

• The state of each processor at each time-slot;

• The messages sent and received by each processor on each of their channels at each
time-slot, and;

• In the context of the crash-fault-model, which processors crash at each time-slot.

The definition above is for the static adversary model; in the context of an adaptive or
mobile adversary, it may sometimes be convenient to stipulate that executions specify
further information.

Exercise 3.2. (Some parts of this question are quite open-ended.) According to the
framework we have described, a protocol may specify a different state-transition-diagram
for each processor. Is this important? Is it important that pi is given its name as part
of its input? Would this change if each correct processor had to have the same state-
transition-diagram? How about if processors were not aware of the name of the channel
on which messages arrive?

One final modelling choice significantly affects what protocols can achieve: whether
processors can produce unforgeable signatures on their messages.

3.5 Signatures

Another important distinction is whether or not processors are able to produce unforge-
able signatures for the messages they send, i.e., whether pi is able to attach a signature
to any given message that suffices to prove the message was produced by pi. The use of
authenticated channels might initially seem to make such a signature scheme redundant:
each processor can already see who sent the messages it receives. The crucial point is
that the availability of a signature scheme means no processor will be able to deceive
others about what messages it has received from other processors.

In this book, we focus on the case that a signature scheme is available, since it is the
case of most practical relevance. However, we will not assume a signature scheme is
available unless explicitly stated otherwise. When we do make use of signatures, we
entirely blackbox the necessary cryptography. Formally, when we consider a model with
signatures this simply means that:

• For each pi ∈ Π and each message m, there exists a special message, denoted ⟨m⟩i,
to be thought of as the ‘message m signed by pi’.

11

• For each pi ∈ Π and m, processors other than pi cannot send any message con-
taining the sequence ⟨m⟩i until any time-slot at which they have received a mes-
sage containing this sequence.4 This means we restrict the set of allowable state-
transition-diagrams (even for Byzantine processors) to those which obey this re-
quirement.

To see the significance of signatures, suppose p1 wants to tell p2 that it received message
‘attack’ from p0. Without signatures, p1 could lie. With signatures, p1 must forward
⟨attack⟩0, which only p0 could have created.

An aside for those familiar with cryptography. As described above, we consider
idealised signature schemes. Those familiar with how signature schemes are established
in practice will know that, in reality, there are a number of subtleties. For example, a
signature scheme will generally require some form of public-key-infrastructure to achieve
proper functionality. Signatures must be efficiently produceable and verifiable (no spe-
cial considerations concerning verifiability are necessary in our formulation, because
there is nothing to stop state-transition-diagrams being able to recognise whether a sig-
nature is valid). Signature schemes require certain cryptographic assumptions, and one
must also restrict to the case of polynomial-time-bounded adversaries. Even under all
these restrictions, one has to accept a negligible chance of error in any given execution.
We take the approach of using idealised signature schemes to avoid these complica-
tions. While one could recast all our arguments in the standard formal frameworks of
cryptography, to do so would be a distraction here.

3.6 The research programme

Given the formal framework outlined above, the questions we now want to answer in-
clude:

• For which n and f do there exist protocols to solve Byzantine Agreement and
other variants of the problem?

• How does this depend on our assumptions regarding message reliability, i.e., whether
we are working in the lock-step/synchronous, the partially synchronous or the
asynchronous model?

• Does the answer depend on whether we consider a model with signatures?

The order in which we address these issues is as follows. We start with the lock-step
model; as noted previously, all our results for that model will also hold for the syn-
chronous model. We focus on Byzantine faults and we determine for which n and f
Byzantine Agreement is possible, depending on whether signatures are available. Then
we repeat all of the same questions for the partially synchronous and asynchronous mod-
els. Along the way, we will also consider variants of the Byzantine Agreement problem,
such as Byzantine Broadcast and State-Machine-Replication, and we’ll discuss certain

4To model a fully colluding adversary, we can also allow a Byzantine processor pi to send a message
containing ⟨m⟩j before receiving any message containing this sequence in the case that pj is also Byzan-
tine, or if another Byzantine processor has already received such a message. Whether or not we make
such an allowance will not impact any of our results here.

12

important properties of protocols, such as message complexity, responsiveness and ac-
countability. [Andy: Later, let’s expand on this a bit. Or else cut and put in another
segue.]

Chapter 4

Byzantine Agreement and
Byzantine Broadcast

In Chapter 2 we considered a version of the Byzantine Agreement (BA) problem which
was binary in the sense that processors had to decide between two output options. While
binary agreement captures the essence of consensus, many practical applications require
agreement over larger domains—for example, nodes in a distributed database might need
to agree on which of many possible updates to process next. Here is the more general
version of the problem:

• We consider a set of n processors, of which at most f display Byzantine faults.

• For some set V , each processor is given an input in V (different processors poten-
tially receiving different inputs). The set V is told to the processors and could be
of any finite size ≥ 2.

• The protocol must satisfy the following conditions:

– Termination. All correct processors must give an output in V .

– Agreement. No two correct processors can give different outputs.

– Validity. If all correct processors have the same input v, then v must be
their common output.

On seeing the more general version of the problem specified above, it is natural to ask
the relationship to the previous binary version. Of course, any protocol which solves the
more general form of the problem also gives a solution for the binary case. There are
also reductions, such as that by Turpin and Coan [3], which show that in certain settings
a protocol for the binary version of the problem can be used to solve the more general
case. In this book, it will not be necessary to treat the two versions of the problem
separately because:

• All impossibility results will apply to the binary version of the problem (as well as
the general form).

• All protocols described for solving Byzantine Agreement will solve the general form
(and so also the binary form).

13

14

An aside on Validity. A difficulty when interacting with the literature on consensus
is that there is a lack of consensus on terminology. The condition for Validity we have
stated above is sometimes referred to as ‘Weak Validity’, while the latter term also
sometimes refers to the following requirement: if all processors are correct and have the
same input value, then this common input must be the value output by each processor.
There are also many other variants considered, with a range of names. For example, a
version sometimes called ‘Strong Validity’ requires that any value output by a correct
processor must have been input to at least one correct processor.

Byzantine Broadcast. In the original papers in which Lamport, Shostak and Pease
introduced the Byzantine Agreement problem, they actually focussed on a variant of the
problem which is now most frequently referred to as Byzantine Broadcast (BB). Byzan-
tine Broadcast models scenarios where a designated party called the broadcaster (like a
commanding officer or system coordinator) is required to reliably disseminate informa-
tion to all participants, even if some participants (perhaps including the broadcaster)
are malicious:

• We consider a set of n processors, of which at most f display Byzantine faults.

• One processor is designated the ‘broadcaster’. All processors are told the name of
the broadcaster.

• The broadcaster is given an input in some set V . The set V is told to all processors.

• The protocol must satisfy the following conditions:

– Termination. All correct processors must give an output in V .

– Agreement. No two correct processors can give different outputs.

– Validity. If the broadcaster is correct and has input v, then all correct
processors must output v.

The relationship between BA and BB. What is the relationship between the Byzan-
tine Agreement and Byzantine Broadcast problems? In Chapter 2, we noted that BA
cannot be solved when f ≥ n/2. However, it is easy to see that the argument given
there does not apply to BB (you are invited to check). In Chapter 5 we will see that,
if signatures are available and we work in the lock-step model, then BB can actually be
solved for any number of faulty processors. So, there are certainly scenarios in which
BB can be solved although BA cannot be.

On the other hand, if we work in the lock-step model, and if f < n/2, then the two
problems reduce to each other quite easily:

• If we can solve BB, then to solve BA we have all processors broadcast their inputs
using the protocol for BB (meaning that we carry out n simultaneous executions
of BB). Once a value is decided corresponding to each processor, processors then
decide by majority vote, breaking ties in some previously arranged but arbitrary
fashion.

• If we can solve BA, then to solve BB we have the broadcaster send their input to
all other processors at time-slot 0. Each processor then takes the value received at
time-slot 1 as their input value, choosing some arbitrary value in V if no value is
received from the broadcaster. We then have the processors carry out the protocol
for BA on those input values.

15

So far, it might seem that BB is strictly easier than BA. As a word of caution, we will
later see that, in the partially synchronous and asynchronous models, it is not possible
to solve BB if f ≥ 1, although protocols do exist to solve BA. So, the two problems are
not strictly comparable in a general sense.

Other fault models. When restricting to the crash-fault model, we’ll call the corre-
sponding version of BB, ‘Crash-fault Broadcast’. We’ll call the version with omission-
faults, ‘Omission-fault Broadcast’. Similarly, we may consider a version of BA with
crash-faults, which we’ll call ‘Crash-fault Agreement’, and we’ll call the version with
omission faults, ‘Omission-fault Agreement’.

Chapter 5

The lock-step model with
signatures

In this chapter, we consider the lock-step model with signatures. First, in Section 5.1, we
prove a positive result, by introducing the elegant protocol for Byzantine Broadcast by
Dolev and Strong [4]. This protocol dates back to the early 80s but remains an important
tool for those developing the theory of consensus protocols, because it is really the only
protocol that can deal with an arbitrary number of (Byzantine) faults. In Sections 5.2
and 5.3, we then prove two impossibility results, both of which establish some sense in
which the Dolev-Strong protocol is optimal. A reader wishing to focus on techniques
required for positive results may wish to omit the proofs in Sections 5.2 and 5.3, and
just memorise these two results before skipping to Chapter 6.

5.1 The Dolev-Strong protocol

In this section, we’ll prove the following theorem.

Theorem 5.1. Consider the lock-step model with signatures. There exists a protocol
that solves the Byzantine Broadcast problem for any number of faulty processors, i.e.,
for any f ≤ n.

Note that Theorem 5.1 also suffices to establish precisely when BA is possible for the
lock-step model with signatures: by the reductions discussed in Section 4, and since we
know BA is not possible when f ≥ n/2 (see Chapter 2), BA is solvable iff f < n/2.

5.1.1 Informal discussion: why isn’t it trivial?

Before describing the proof, let us explore why a trivial solution does not work. When
signatures are available, one obvious way to try solving BB would be to have the broad-
caster send out signed values of their input to each of the other processors. The pro-
cessors could then repeatedly share all of the signed values they have seen produced by
the broadcaster. If they only ever see a single value produced, then they output that
value. If they ever see two different values produced (or no values), then they realise the

16

17

broadcaster is faulty, so they give some ‘default’ value as output. Of course, the idea
behind this approach is that if the broadcaster is correct, then they will only produce a
single signed value and all correct processors will output that value. If the broadcaster
produces two different signed values (or no values) and shows them to correct processors
then everyone will eventually see or ‘recognise’ that those signed values have been sent
out by the broadcaster, and will give the default output.

Hopefully, the problem with this approach is quite clear. At what point should the
processors stop sharing values and output? If they share until time-slot t, then the
adversary can choose to show one signed value to all correct processors prior to time-
slot t, and then show some subset of the correct processors a second signed value at
time-slot t (when it is too late to share anymore), causing the Agreement requirement
of BB to be violated. We could require processors to ignore (not to ‘recognise’) new
values seen at the last time-slot t, but this only takes things one step back: now the
adversary just has to show some subset of the correct processors a second signed value
at time-slot t − 1. It’s a common reaction to feel that some sort of approach along
these lines must work, and it’s a good exercise to specify a few simple approaches and
work out exactly why they don’t work (or else realise that they do and that you have
reinvented the Dolev-Strong protocol for yourself!).

The trick (informal). What we need is a clever mechanism to ensure that if any correct
processor ‘recognises’ a certain signed value as being produced by the broadcaster, then
all correct processors will also ‘recognise’ that value. That way, either they all recognise
a single value and give that as output, or they all recognise (no values or) multiple values
and so give the default output. The mechanism that Dolev and Strong used to achieve
this works as follows:1

(i) At time-slot 0 the broadcaster sends signed versions of their input to each proces-
sor.

(ii) At time-slot 1, the processors look to see whether they have received a signed value
from the broadcaster, and if so then they ‘recognise’ that value. Now, though,
rather than just passing on that signed value, they attach their own signature to
the message, so that now it has been signed twice – first by the broadcaster and
then secondly by them. Then they send this new version of the message to all
processors.

(iii) Then we stipulate that, if a processor is to ‘recognise’ a new value at any time-slot
t, the message must have been signed by t distinct processors (with the broadcaster
signing first). If they recognise a new value at time-slot t, they add their signature
to the list and send that message (now with t+ 1 distinct signatures) to all other
processors.

(iv) At time-slot f+1 we give the processors a last chance to recognise new values (but
not to share again), before either outputting the single value they have recognised
or else the default value.

Why does this approach work? We have to show that if any correct processor
recognises a certain value v ∈ V , then all correct processors will also recognise that
value. There are two cases to consider:

1The result was originally proved by Lamport, Shostak and Pease [1], but the proof described here
was given a little later by Dolev and Strong [4].

18

• Case 1. Suppose that some correct pi first recognises v at a time-slot t < f + 1.
In this case, pi receives a message relaying the value v at time-slot t that has
t distinct signatures attached. Processor pi then adds their signature to form a
message with t + 1 distinct signatures and sends this message to all processors.
This means all correct processors will recognise v by time-slot t+ 1 (≤ f + 1).

• Case 2. Suppose next that some correct pi first recognises v at time-slot f + 1.
In this case, pi receives a message relaying the value v at time-slot f + 1 that
has f + 1 distinct signatures attached. At least one of those signatures must be
from a correct processor pj (since there are at most f faulty processors), meaning
that Case 1 applies w.r.t. pj , i.e., pj must have recognised and forwarded v to all
processors at a previous time-slot.

In summary, the approach works because either a correct processor recognises v at some
time-slot < f + 1, in which case they pass it on and all correct processors recognise v,
or else some correct processor recognises v at time-slot f +1. In the latter case, the fact
that f+1 processors have already signed the message means that some correct processor
has already recognised (and passed on) v at a previous time-slot.

In the next subsection, we give a more formal version of the protocol.

5.1.2 A formal description of the protocol

The proof described above was quite simple, but was described in somewhat informal
language. Here is a more formal version. Recall that ⟨m⟩i is the message m signed by
pi. For v ∈ V , and for distinct processors pi1 , . . . , pit , we let ⟨v⟩i1,...,it be v signed by
pi1 , . . . , pit in order, i.e., for each k ∈ (1, t], ⟨v⟩i1,...,ik is ⟨v⟩i1,...,ik−1

signed by pik . For
t ∈ N≥1, let Mt be the set of all messages of the form ⟨v⟩i1,...,it such that v ∈ V , pi1 , . . . pit
are distinct processors, and pi1 is the broadcaster. Each processor pi maintains a set Oi,
which can be thought of as the set of values that pi recognises, and which is initially
empty. We let ⊥ denote a ‘default’ element of V .

The instructions for processor pi are as follows.

Time-slot 0. If pi is the broadcaster and if pi’s input is v, then pi sends ⟨v⟩i to
all processors and adds v into Oi.

Time-slot t with 1 ≤ t ≤ f + 1. Consider the set of messages m ∈ Mt that pi
receives at time-slot t. For each such message m = ⟨v⟩i1,...,it , if v /∈ Oi, proceed
as follows: add v into Oi and if t < f + 1 send ⟨m⟩i to all processors.

The output for processor pi. After executing all other instructions at time-slot
f + 1, pi outputs v if Oi contains the single value v, and otherwise pi outputs ⊥.

5.1.3 The verification

We have to verify that the protocol satisfies Termination, Agreement, and Validity:

• Termination. Satisfaction of this condition is obvious, because correct processors
give an output at time-slot f + 1.

19

• Agreement. It suffices to show that if any correct processor pi recognises v ∈ V
(adds v into Oi), then all correct processors do so. This follows from the proof
already given above.

• Validity. If the broadcaster, pi say, is correct and has input v, then all correct
processors will recognise v by time-slot 1. Since pi does not send any messages
⟨u⟩i for u ̸= v, no correct processor can recognise any value other than v. All
correct processors therefore output v.

5.1.4 Making the protocol more efficient

In the protocol as we have described it so far, processors can recognise (and pass on) any
number of values in V . To make the protocol more efficient in terms of the number of
messages sent by correct processors, note that it suffices for each processor to recognise
and pass on at most two values. That way, either all correct processors recognise no
values at all and give the default output, or they all recognise a single value and give
that as their output, or they all recognise two values and give the default output. In any
case, correct processors output correctly. Exercise 5.1 asks you to write down a formal
description of the modified protocol.

5.1.5 Why do we need other protocols for BB/BA?

Given that the Dolev-Strong protocol can handle any number of faults, do we need to
consider any other protocols for BB? The main drawbacks of the protocol are:

• It requires either the lock-step model or (when suitably modified) the synchronous
model, and;

• It is slow, requiring f + 1 rounds of communication.

In some real-world contexts, f could be on the order of one hundred or more, so the
requirement for f + 1 rounds of communication is significant. Actually, we will show in
the next section that any deterministic protocol requires f+1 rounds of communication,
but we will also see later (in Chapters 9 and 12) that, in certain suitably formalised
settings, some probabilistic protocols can terminate in an expected constant number
of rounds. Even among deterministic protocols, Exercise 5.3 investigates an important
sense in which the Dolev-Strong protocol is slow.

5.1.6 Exercises

Exercise 5.1. Write down a formal description of the more efficient version of the
Dolev-Strong protocol described in Section 5.1.4. Show that, for this modified protocol,
the total number of messages sent by all correct processors combined is O(n2). Note that
a single processor sending a single message to all others means sending n− 1 messages.

Exercise 5.2. In Chapter 2 we observed that, for the Byzantine fault-model, no protocol
can solve BA when f ≥ n/2. Use the Dolev-Strong protocol to show that this is not
true for the crash-fault model if we only require the following version of Validity: if all

20

processors receive the same input v, then all correct processors must output v. Hint:
consider the approach we described in Chapter 4, in which one uses a protocol for BB to
solve BA. Note that the Dolev-Strong protocol can be adapted to the crash-fault model so
that, when the broadcaster is faulty, either all correct processors output the broadcaster’s
input value, or else they all output the special value ‘faulty’. Then, apply a majority vote
argument to the values output by each instance of BB.

Exercise 5.3. This question explores an important sense in which the Dolev-Strong
protocol is slow when compared to some other deterministic protocols.

Some protocols satisfy useful ‘early stopping’ properties, whereby processors can output
in a smaller number of time-slots in many executions (e.g., if it happens to be the case
that the actual number of faulty processors is less than the known bound f). Consider
modifications of the Dolev-Strong protocol in which the messages sent by correct pro-
cessors are unchanged, but where correct processors may output before time-slot f + 1
under some conditions. Does there exist any such modification (still solving BB for any
f ≤ n) for which correct processors can sometimes/always output before time-slot f + 1
if all processors act correctly?

Exercise 5.4. This question explores a context that sometimes arises when building
blockchains, in which some subset of the processors are able to receive and pass on
messages, but cannot create new messages themselves.

Suppose f < n and that some subset of m < n− f of the correct processors are required
to be ‘mute’. Mute processors are not allowed to create new messages (including signed
versions of messages they have received), but can send messages they have received to
others. Specify a version of the protocol that works for this new setting, and prove that
your protocol works as required. Hint: consider allowing mute processors to pass on
messages at odd time-slots, while moving other instructions to even time-slots.

5.2 Proving f + 1 rounds of communication are necessary

When considering the lock-step model, we’ll say a protocol terminates in x rounds if it
holds in every execution that all correct processors output by time-slot x, i.e., after x
rounds of communication. Note that the Dolev-Strong protocol solves BB and terminates
in f + 1 rounds. In the same paper in which they introduced the protocol, Dolev and
Strong showed that no deterministic protocol for solving BB terminates in f rounds. In
fact, they showed that this is true even when we restrict to the crash-fault model.

Theorem 5.2. Consider the lock-step model (with or without signatures) and suppose
f < n − 1. No deterministic protocol for (binary) Crash-fault Agreement terminates in
f rounds.

In this section, we’ll prove Theorem 5.2, giving our first (non-trivial) impossibility result.
While the original proof was by Dolev and Strong, we’ll give a simplified version of a
proof by Aguilera and Toueg [5].

Corollaries of Theorem 5.2. Of course, the result for crash-faults immediately gives
the corresponding result for BA. By the reduction of Chapter 4, the result for BA
immediately suffices to give the result for BB when f < n/2. Exercise 5.8 asks you to
modify the proof to give the result for BB and all f < n− 1.

21

Exercise 5.5. Suppose f = 0 and n ≥ 2. Show that no protocol for Crash-fault Agree-
ment (or for Agreement under any other fault model) terminates in 0 rounds, so that it
suffices to consider the case f > 0 in what follows.

Two new techniques. Our proof of Theorem 5.2 combines two fundamental techniques
that appear throughout Distributed Computing. The first technique is the use of ‘in-
distinguishability arguments’. The core idea is that processors can only make decisions
based on what they observe during an execution. If a processor pi receives the same
input and the same sequence of messages in two different executions, it must produce
the same output in both. In this case, we say the two executions are indistinguishable
for pi. A typical indistinguishability argument derives a contradiction by describing one
execution in which a processor pi gives a particular output, and then describing another
in which pi should not have the same output, but must do because the two executions
are indistinguishable for pi.

As a simple example, consider n = 3 processors where p0 has input 0, p1 has input 1,
and p2 has input 1. Recall that executions begin at time-slot 0. If all processors output
0 at time-slot 1 in an execution E in which all processors are correct, then we can use
an indistinguishability argument to derive a contradiction to Validity. Consider a crash-
fault execution E′ which is identical to E, except that p0 crashes at time-slot 0 and does
not send any messages to p1, but still sends the same messages to p2 as in E. Since E
and E′ are indistinguishable for p2 up to the end of time-slot 1, and since p2 outputs 0
at time-slot 1 in E, it must also output 0 at time-slot 1 in E′. This contradicts Validity,
since all correct processors have input 1 in E′.

The second new technique is the use of ‘bivalency arguments’. Roughly, a partial execu-
tion (up to some time-slot t, say) is bivalent if it has not yet been decided how correct
processors will output. Our proof of Theorem 5.2 will suppose that there exists a pro-
tocol that always terminates in f rounds, and then derive a contradiction by showing
that there exist partial executions in which processors are supposed to have terminated,
but which must also be bivalent.

Indistinguishability and bivalency will be introduced formally in Sections 5.2.2 and 5.2.3.
First, we need to define runs, which are just partial executions.

5.2.1 Defining runs as partial executions

Fix n and f with 0 < f < n− 1, and any protocol P. Since we consider the crash-fault
model, all processors have the state-transition-diagram specified by P, and at most f
processors may crash during any execution. In fact, it will be convenient to further
restrict to executions in which at most one processor crashes at each timeslot : this gives
us a tidy space to work in, and proving that the impossibility result holds even when
we restrict to this specific class of executions clearly suffices to establish the claim of
Theorem 5.2. So, let E be the set of executions of P of this form (and in the lock-step
model). We make the following definitions:

• By a 0-run (think of a ‘run of length 0’), we mean a specification of the input (0
or 1) to each processor.

• Recall that we start from time-slot 0. If k ≥ 1, by a k-run we mean a specification
of:

22

(i) The input to each processor;

(ii) The messages sent and received (on each channel) by each processor at each
time-slot < k, and;

(iii) Which processors crashed at each time-slot < k.

By a run, we mean a k-run, for some k. We define whether one run extends another in
the obvious way. If r is a k-run and r′ is a k′-run with k′ ≥ k, we say r′ extends r if:
(i) in r′, all processors receive the same inputs as in r; (ii) at each time-slot < k, the
messages sent and received (on each channel) by each processor are the same in r′ as in
r, and; (iii) at each time-slot < k, the same processors crash in r′ and r. We also extend
this terminology in the obvious way to executions. So, if E ∈ E , and r is a k-run, we
say E extends (or is an extension of) r if the three conditions above hold when r′ is
replaced by E. Finally, we let Rk be the set of k-runs that have an extension in E .

5.2.2 Indistinguishable runs and executions

We say two executions E,E′ ∈ E are indistinguishable for pi if:

(i) pi receives the same input in both executions;

(ii) At each time-slot, the messages sent and received (on each channel) by pi are the
same in E as in E′.

(iii) pi crashes at the same time-slot (if any) in both runs.

Similarly, we say two k-runs are indistinguishable for some pi if (i)-(iii) above hold with
respect to those runs when we restrict to time-slots < k. The crucial point is this: If
two executions/runs are indistinguishable for correct pi, and if pi has some output in
one, then it must have the same output in the other. This basic fact will be a useful
tool in our impossibility argument, and is also central to most impossibility arguments
in Distributed Computing.

5.2.3 Univalent and bivalent runs

We make the following definitions:

• A run r is 0-valent [1-valent] if all correct processors output 0 [1] in every execution
in E extending r.

• A run is univalent if it is 0-valent or 1-valent, otherwise it is bivalent.

Intuitively, a bivalent run is one in which the protocol hasn’t committed to either output
yet.

Motivating bivalency. With these definitions in place, the basic form of our argument
will be quite simple. First, we’ll give a short proof showing that some 0-run is bivalent.
This proof will be a simple indistinguishability argument. Then we’ll use a proof by

23

induction (which also includes multiple indistinguishability arguments) to show that,
if P terminates in f rounds, some f -run is bivalent. This gives a contradiction, since,
according to the framework as specified in Chapter 3, each f -run suffices to specify the
state of each correct processor pi at time-slot f , as well as the messages received by pi
at time-slot f . If P terminates in f rounds, any f -run therefore specifies the output of
each correct processor.

The formal proof appears in Section 5.2.4.

5.2.4 The proof of Theorem 5.2

Fix n and f with 0 < f < n − 1. Suppose P is a deterministic protocol that solves
Crash-fault Agreement and terminates in f rounds. As noted already in Section 5.2.3,
our basic aim is to derive a contradiction by showing that some f -run is bivalent. Since
the proof is by induction, first we consider the base case.

Lemma 5.3. There exists a bivalent 0-run.

Proof. Towards a contradiction, suppose all 0-runs are univalent. Recall that the set of
processors is Π = {p0, . . . , pn−1}. For each i ∈ [0, n], let ri be the 0-run in which all
processors pj for j < i receive input 1, while all other processors receive input 0. Since
P satisfies Validity, it follows that r0 is 0-valent, while rn is 1-valent, and from this it
follows that there exists i ∈ [0, n) such that ri is 0-valent, while ri+1 is 1-valent. Consider
the two executions in E extending ri and ri+1, in which all processors are correct, except
that pi crashes at time-slot 0, without sending any messages. These two executions are
indistinguishable for all processors other than pi, meaning that all other processors must
give the same output in both executions. This gives the required contradiction.

Now we complete the argument. We prove by induction that, for all k ≤ f , Rk contains
a bivalent k-run.

Base case. This is Lemma 5.3.

Induction Step. For k < f , let r be a bivalent k-run in Rk and note that, by the
definition of Rk, at most k processors crash in r. Towards a contradiction, suppose that
all extensions of r in Rk+1 are univalent. Let r∗ ∈ Rk+1 be the extension of r in which
no processors crash at time-slot k. By assumption, r∗ is univalent. W.l.o.g. suppose it
is 1-valent. Since r is bivalent, it has another extension in Rk+1 that is 0-valent, r0 say.
A single processor p must crash at time-slot k in r0. Suppose p fails to send messages to
pi1 , . . . , pid at time-slot k. For each j ∈ [1, d], let rj be the run in Rk+1 that is identical
to r0, except that p does send messages to pi1 , . . . , pij . There are two cases:

Case 1. For some j ∈ [1, d], rj−1 is 0-valent, while rj is 1-valent. The only difference
between rj−1 and rj is that pij is sent a message from p at time-slot k in rj . There
exists at least one correct processor not equal to pij , since f < n − 1. If k + 1 = f , we
get an immediate contradiction to the claim that rj−1 is 0-valent while rj is 1-valent,
since all correct processors output at time-slot k + 1, and all correct processors other
than pij receive the same messages at time-slot k + 1 in all extensions of rj−1 or rj . If
k < f − 1, consider the two executions, extending rj−1 and rj respectively, in which pij
crashes at time-slot k+1 without sending any messages at that time-slot, and in which

24

no processor crashes at any later time-slot. These two executions are indistinguishable
for all correct processors, again contradicting the claim that rj−1 is 0-valent while rj is
1-valent.

Case 2. Otherwise, rd is 0-valent and r∗ is 1-valent. The only difference between the two
runs is that p crashes at time-slot k in rd. If k+1 = f , we get an immediate contradiction
to the claim that rd is 0-valent while r∗ is 1-valent, since all correct processors output
at time-slot k + 1, and all processors other than p receive the same messages at time-
slot k + 1 in all extensions of rd or r∗: p can send messages at time-slot k + 1 = f in
extensions of r∗, but those messages will not be delivered until after all correct processors
have outputted. If k + 1 < f , then consider executions:

• E1 ∈ E extending rd, in which no processor crashes at time-slots > k, and;

• E2 ∈ E extending r∗, in which p crashes at time-slot k + 1 without sending any
messages at that time-slot, and in which no processor crashes at any later time-slot.

These two executions are indistinguishable for all correct processors, contradicting the
claim that rd is 0-valent, while r∗ is 1-valent.

5.2.5 Exercises

Exercise 5.6. This question investigates some differences between the proof given by
Aguilera and Toueg [5] and the proof presented here. In the proof above, we argued that,
if P terminates in f rounds, there exists an f -run that is bivalent.

(i) Where is the fact that P terminates in f rounds used in the proof?

(ii) The proof of Aguilera and Toueg begins by showing that, if P terminates in f
rounds, then every run in Rf−1 must already be univalent. Prove their claim.
Hint: towards a contradiction, suppose there is a bivalent run in Rf−1. Consider
two extensions of different valency: one in which no processors crash at time-slot
f−1 and another in which one more processor crashes. Use an indistinguishability
argument similar to those we described above to contradict the idea that these runs
have different valencies.

Exercise 5.7. The statement of Theorem 5.2 assumes f < n − 1. Show that, for
f ≥ n− 1, there exists a protocol that solves BB and terminates in f rounds.

Exercise 5.8. Show how to modify the proof of Theorem 5.2 to give the result for BB
(for all f < n − 1). Hint: one only has to modify the part of the proof establishing
that there exists a bivalent 0-run. For BB, define a 0-run to be a specification of which
processor is the broadcaster and their input.

5.3 Quadratic communication is necessary

We are generally interested in protocols for BB and BA when f is at least a constant
fraction of n. In this section, we show that deterministic protocols solving BB for such

25

adversaries require correct processors to send a number of messages that is at least
quadratic in n. By the reduction of Chapter 4, the result also holds for BA. This lower
bound is a fundamental barrier to describing consensus protocols that scale, i.e., remain
practical when the number of processors is large.

The result was originally proved by Dolev and Reischuk [6]. We present a proof that
uses an indistinguishability argument very similar to theirs, but with some minor sim-
plifications. While they stated the result for Byzantine faults, it is easily observed that
it suffices to consider omission-faults.

Theorem 5.4. Consider the lock-step model (with or without signatures). Suppose
f < n − 1. Any deterministic protocol for Omission-fault Broadcast has executions in
which correct processors send at least max {(n− 1)/2, (f/2)2} messages.

Proof. The key idea is to show that if processors send too few messages, we can construct
two executions that look identical to some processors but require different outputs.

Fix a broadcaster. As noted above, the basic idea is that we’ll consider executions in
which processors receive few messages and derive a contradiction. So, let us start by
considering how processors output when they receive no messages at all. Note that
some d ∈ {0, 1} must satisfy the condition that there exists a set of at least (n − 1)/2
processors Q other than the broadcaster that do not output d in an execution in which
they are correct and do not receive any messages. W.l.o.g., suppose this is true for d = 0.
Then, in the execution in which all processors are correct and the broadcaster has input
0, all processors in Q must receive a message. So, this is an execution in which correct
processors send at least (n− 1)/2 messages.

Now suppose that the maximum is not achieved by the first term in the statement of the
lemma, so that f > 0. Next, we take an arbitrary subset P1 ⊆ Q of size ⌈f/2⌉, setting
P2 to be all processors outside P1. Why do we take P1 to be of size ⌈f/2⌉? The plan is
as follows:

• We consider the execution E1, in which the broadcaster has input 0 and only the
processors in P1 are faulty. Processors in P1 act correctly except that they do
not send or receive messages to or from each other, and ignore messages from
processors in P2.

• Correct processors must output 0 in E1, since the broadcaster is correct and has
input 0.

• If each processor in P1 receives at least ⌈f/2⌉ messages from processors in P2 in
E1, then we are done, since the correct processors in P2 must then send at least
|P1| · f/2 ≥ (f/2)2 messages (combined). Otherwise, there exists p ∈ P1 that
receives at most ⌊f/2⌋ messages from processors in P2.

• Now we use the fact that, because P1 is of size ⌈f/2⌉, we have ⌊f/2⌋ processors
left to be faulty. We consider an execution E2 in which p is correct, the remaining
processors in P1 act as in E1, and all processors in P2 act correctly except that
they do not send messages to p (this requires at most ⌊f/2⌋ of them to be faulty).

• Since p ignored messages from P2 in E1, does not receive messages from P2 in
E2, and does not receive messages from P1 in either execution, it sends the same

26

messages to processors in P2 in both executions. In fact, E1 and E2 are indistin-
guishable for all processors in P2 that are correct in E2. All such processors must
therefore output 0 in E2, while p does not output 0, since it belongs to Q and
receives no messages. This contradicts Agreement.

The above describes the whole argument, but now let’s flesh out the details. As noted
above, correct processors must output 0 in E1, and we are done if each processor in P1

receives at least ⌈f/2⌉ messages from processors in P2 in E1. So, suppose that, in E1,
p ∈ P1 receives at most ⌊f/2⌋ messages from processors in P2. Let A be the set of all
processors in P2 that send messages to p in E1, noting that |A| ≤ ⌊f/2⌋. We specify E2

as follows:

• Processors in {p} ∪ P2 \A are correct.

• Processors in P1\{p} act correctly, except that they do not send or receive messages
to or from processors in P1, and ignore messages from processors in P2.

• Processors in A act correctly, except that they do not send messages to p.

Then it follows directly by induction on time-slots that the only possible differences
between the messages sent at each time-slot t in E1 and E2 are:

1. In E1, a processor in A may send a message to p that is not sent in E2, but is
anyway ignored by p in E1.

2. In E2, p may send a message to p′ ∈ P1 that is not sent in E1, but is anyway
ignored by p′ in E2.

In particular, E1 and E2 are indistinguishable for processors in P2 \A. Since f < n− 1,
the set P2 \ A is non-empty. Since E1 and E2 are indistinguishable for processors in
this set, they must output 0 in E2 (as in E1). However, p receives no messages in E2

and therefore does not output 0, since it belongs to Q. This contradicts satisfaction of
Agreement.

Further discussion. Theorem 5.4 lower bounds message complexity, i.e., the number
of messages sent by correct processors. To give a more fine-grained analysis, it is also
interesting to consider communication complexity, i.e., the number of bits sent by correct
processors. To what extent is the theorem tight with respect to these two measures?

We have already seen that there is a version of the Dolev-Strong protocol in which each
correct processor except the broadcaster sends at most two messages to all other pro-
cessors, and which solves BB with message complexity O(n2) (with signatures). When
f < n/3, Berman, Garray and Perry [7] have shown that BA (and so BB) can be solved
with communication complexity O(n2) without signatures. The proof uses a recursive
form of the Phase King protocol: the Phase King protocol will be explained in Chapter
6, and the recursive form is discussed in Appendix B. In Chapter 6, we also show that
BA and BB are not solvable without signatures when f ≥ n/3. When f < n(1/2 − ϵ)
for some ϵ > 0, Momose and Ren [8] show that BA can be solved with communication

27

complexity O(n2). Exercise 5.10 walks you through a simple way to show that any pro-
tocol solving BA with communication complexity O(n2) can be converted into a protocol
solving BA with communication complexity O(nf).

Theorem 5.4 establishes an Ω(n + f2) lower bound, while the discussion above only
establishes that protocols with communication complexity O(nf) are possible. In fact,
Dolev and Reischuk [6] showed that, for message complexity and for protocols that use
signatures, the Ω(n+ f2) lower bound is tight: there exists a protocol using signatures
that solves BB with message complexity O(n+ f2). Although the proof explicitly con-
siders BB, it is easily converted to give a similar proof for BA (given a protocol for BA
with O(n2) message complexity).

With respect to communication complexity, or for protocols that do not use signatures,
Dolev and Reischuk showed that the O(nf) bound described above is tight: any protocol
solving BB with signatures requires Ω(nf) communication complexity and any protocol
solving BB without signatures requires message complexity Ω(nf) (see Exercise 5.9).
As far as we are aware, it remains open as to whether there exists a protocol solving
Omission-fault Broadcast (or Agreement) with communication complexity O(n+ f2).

Galil, Mayer and Yung [9] show that Crash-fault Broadcast can be solved with message
complexity O(n). In Appendix A, we describe a much simpler (but less time-efficient)
protocol solving Crash-Fault Broadcast with communication complexity n+ f .

5.3.1 Exercises

Exercise 5.9. Dolev and Reischuk [6] also produce a lower bound on the number of
signatures (signed messages) sent by correct processors in the case of Byzantine faults.
Since some protocols solve BB without signatures (see Chapter 6), the lower bound must
somehow count the messages that do not contain signatures. Dolev and Reischuk there-
fore make the technical assumption that every message carries at least the signature of
its sender. Alternatively, the lower bound can count the number of signatures together
with the number of messages without signatures. The claim is that, if 0 < f < n − 1,
then any protocol for BB in the lock-step model must have an execution in which correct
processors send at least n(f + 1)/4 signatures. To establish the claim:

(a) Fix a broadcaster. For d ∈ {0, 1}, let Ed be the execution in which all processors
are correct and the broadcaster has input d. For each p, let A(p) be all processors
p′ ̸= p such that either of the following holds in at least one of E0 or E1:

(i) p′ receives a message signed by p (perhaps as part of a larger message), or;

(ii) p receives a message signed by p′.

Argue that if A(p) ≥ f + 1 for all p, then the claimed bound holds.

(b) Suppose A(p) ≤ f . Argue that there exists an execution in which only the pro-
cessors in A(p) are faulty and in which these processors behave towards p as in
E0 (sending p the same messages at the same time-slots) and towards all other
processors as in E1.

(c) Argue that p must output 0 in E2, while the other correct processors are a non-
empty set and must all output 1.

28

Exercise 5.10. Show how to convert a protocol solving BA with communication com-
plexity O(n2) into a protocol for BA with communication complexity O(fn). Hint: Con-
sider running the given protocol on a set of processors of size O(f), and then having
each processor in this set send its output to all other processors.

Chapter 6

The lock-step model without
signatures

In this chapter, we consider the lock-step model without signatures. Note that the
impossibility results of the last chapter still hold for this setting. First, we show that
solving BB or BA is not possible in this setting when f ≥ n/3. Then we show that it
is possible when f < n/3. The proof of the negative result is beautiful, while the proof
of the positive result is instructive. On the other hand, it’s okay just to remember the
results of this chapter and then to skip to the next one if your aim is just to quickly get
up to date with modern protocols, and if you don’t intend to do research in the area.

6.1 The proof of Fischer, Lynch and Merritt

In this section, we prove Theorem 6.1 below. The result was originally proved by Lam-
port, Shostak and Pease [2], but the more elegant proof we present here is due to Fischer,
Lynch and Merritt [10].

Theorem 6.1. Consider the lock-step model without signatures. No protocol can solve
BA or BB when f ≥ n/3.

By the reductions discussed in Chapter 4, it suffices to prove the theorem for BA. To
present a proof for which it is entirely clear why all elements of the proof are necessary,
it is convenient to momentarily consider (in Sections 6.1.1 and 6.1.2) an alternative to
our standard setup regarding communication channels.

6.1.1 A revised communication model

According to the setup described in Chapter 3, each processor pi knows which processor
is at the other end of each communication channel {i, j}, i.e., if pi receives a message
on communication channel {i, j} then pi knows this message must be from pj . However,
to present a proof of Theorem 6.1 for which it is entirely clear why all elements of the
proof are necessary, it is convenient to momentarily consider an alternative setup in
which there is still a two-way channel corresponding to each pair of processors, and

29

30

where each processor is still aware of which channel each message arrives on, but where
processors no longer begin with knowledge as to which processor is at the end of each of
their channels. For example, in a given execution, pi might have two channels to pj and
pk. At each time-slot, it might receive messages from pj on the first of these channels,
and messages from pk on the other. The instructions for pi may also depend on which
messages have arrived at each channel, but, in this revised model, pi is not told which
processor is at the other end of each channel.

Recall that the notion of ‘indistinguishable’ executions was introduced in Chapter 5
(there in the context of crash-faults): when we say that two executions are indistin-
guishable for a certain processor, we mean that the processor has the same inputs and
sees precisely the same messages arriving on their communication channels at each time-
slot in the two executions. To prove Theorem 6.1, we will ultimately describe an in-
distinguishability argument involving six processors. The reason we initially consider
the revised communication model is so that we can first give a simpler proof involving
four processors. Then we will come back to the standard setup, and explain why six
processors are necessary for the full proof.

6.1.2 The case n = 3, f = 1 for the revised communication model

For the revised communication model, we can describe a simple proof by contradiction.
The approach taken might initially seem a bit unusual: we suppose a working protocol
exists and then we use indistinguishability arguments to deduce certain things about how
the protocol must behave in scenarios which are different than the intended application.
This might seem an odd thing to do, but the analysis allows us to deduce that there
exist valid executions of the protocol in which it does not behave correctly.

We start by considering the case n = 3, f = 1. We suppose there exists a working
protocol, and we consider what happens when four processors all execute the protocol
for n = 3 and f = 1 correctly, when the communication channels are arranged as in
Figure 6.1. In the figure, each node represents a correct processor. We refer to them
by the names p0, p1, p

′
0, and p′1 and suppose that each processor pi or p

′
i for i ∈ {0, 1} is

told their name is pi. Next to each processor is also indicated its input, either a or b.
There are communication channels between processors p0 and p1, between processors p0
and p′1, between processors p′1 and p′0 and between processors p′0 and p1. Each processor
behaves precisely as dictated by the protocol, according to its input and the messages
that it receives on each communication channel at each time-slot. Of course, this is not
a configuration in which the protocol was intended to operate, but the way in which
it behaves here will allow us to deduce things about how the protocol behaves in valid
executions (with the right number of nodes and with communication channels arranged
in the standard fashion).

Deriving the contradiction. What can we deduce about the outputs of the processors
in this setup?

1. Processors p0 and p1 must both output a, because this four processor execution
is indistinguishable as far as they are concerned from a valid execution with three
processors, in which p0 and p1 both have input a, and in which the third processor is

31

p′1, b

p0, a

p1, a

p′0, b

Figure 6.1

faulty and simulates p′0 and p′1 as arranged as in the figure, i.e, the faulty processor
sends to processor p1 at each time-slot what p′0 sends to p1 in the four processor
execution, and sends to p0 what p′1 sends to p0 in the four processor execution.

2. Similarly (and symmetrically), processors p′0 and p′1 must output b.

3. Now we get to our contradiction. We have already deduced that p0 must output a
and that p′1 must output b. The problem is that this execution is indistinguishable
as far as processors p0 and p′1 are concerned from a valid execution in which the
third processor is faulty and simulates p′0 and p1 as arranged in the figure. The
fact that p0 and p′1 give different outputs therefore violates Agreement.

6.1.3 Back to the standard setup

What happens when we move back to the standard setup in which processors know who
is at the end of each channel? The problem now is that we have to be more careful
when deciding how to treat each channel during indistinguishability arguments. To see
this, consider first processors p0 and p1 in Figure 6.1. If these processors both treat
the channel between them as the channel {0, 1}, and if each processor pi ∈ {0, 1} treats
the channel between pi and p′1−i as the channel {i, 2}, then we can again deduce that
processors p0 and p1 must output a. If the same conditions hold when we reverse the role
of i and i′ for i ∈ {0, 1}, then it must also be the case that processors p′0 and p′1 output b.
The problem now is that this execution does not look indistinguishable from any valid
execution as far as processors p0 and p′1 are concerned, because in any valid execution
they would both treat the communication channel between them as the channel {0, 1}
rather than {0, 2}.

Adding two more processors. There is a simple way to remedy this problem. We
just introduce two further processors, as in Figure 6.2. We suppose that each processor
with the name pi or p′i in the figure is told that its name is pi, and that it treats the
channel in the figure to any processor pj or p′j as the channel {i, j}. The argument
now works much as before. Processors p0 and p1 must output a because for them the
execution is indistinguishable from a three processor execution in which the processor
p2 is faulty and simulates processors p′2, p

′
0, p

′
1 and p2 in the figure. Processors p′2 and p′0

must output b because for them the execution is indistinguishable from a three processor

32

p2, a

p0, a

p1, a

p′2, b

p′0, b

p′1, b

Figure 6.2

execution in which the processor p1 is faulty and simulates processors p1, p0, p2 and p′1 in
the figure. Now we get to the contradiction because processors p1 and p′2 give different
outputs, but the execution is indistinguishable for them from a three node execution in
which processor p0 is faulty and simulates processors p0, p2, p

′
1 and p′0 as arranged in the

figure.

6.1.4 The proof for general n

So far, we have only dealt with the case n = 3 and f = 1. To deal with the general
case, suppose there exists some n > 3 and f ≥ n/3 for which a working protocol exists.
This protocol can then be used to give a protocol that works for three processors when
at most one is faulty. We divide the n processors in the n processor execution into
three disjoint subsets P0, P1, P2, so that each subset has at most one more element
than the others. Then we have each of the three processors pi ∈ {p0, p1, p2} in the
three processor execution simulate the set of processors Pi in the n processor execution,
giving as output the common output of all processors in Pi (which must exist, since the n
processor protocol satisfies Termination and Agreement). It is easy to verify that, if the
n processor protocol satisfies Termination, Agreement, and Validity, then the protocol
for three processors also satisfies these properties, contradicting the result of Section
6.1.3.

6.2 The Phase-King protocol

In this section, we prove Theorem 6.2 below. The result was originally proved by Lam-
port, Shostak and Pease [2]. Here we describe (a slight modification) of a simple and
more instructive proof by Berman, Garay and Perry [11], which is known as the Phase-
King protocol.

Theorem 6.2. Consider the lock-step model without signatures. There exist protocols
solving BA and BB whenever f < n/3.

33

By the reductions of Chapter 4, it suffices to consider BA. To explain the main protocol,
which must satisfy Termination, Validity and Agreement, in Section 6.2.1 we first con-
sider a simple two step sub-protocol called Gradecast, which satisfies Termination and
Validity, but which does not yet satisfy Agreement.

6.2.1 The Gradecast protocol

Just as for BA, each processor receives an input v ∈ V . Now, though, they output a
value in V and a grade ∈ {0, 1, 2}, which indicates something about the knowledge the
processor has regarding other processors’ outputs. The protocol is shown in the box
below.

Gradecast: The instructions for pi.

Time-slot 0. Send v to all processors.

Time-slot 1. If there exists b such that (at least) n− f processors sent b to pi at
time-slot 0, then send b to all processors.

Time-slot 2. Output as follows:

(i) If there exists b such that n− f processors sent b to pi at time-slot 1, then
output b with grade 2.

(ii) Otherwise, if there exists b such that f+1 processors sent b to pi at time-slot
1, then output b with grade 1.

(iii) If neither of the first two cases apply, output v with grade 0.

The Gradecast protocol is certainly simple. Let us examine its properties and verify
that it is well-defined.

First, it cannot be the case that one processor pi is sent b by n−f processors at time-slot
0, while another processor pj (possibly pi = pj) is sent b′ ̸= b by n − f processors. To
see this, suppose otherwise:

• Let P be the set of processors that sent b to pi, so |P | ≥ n− f ;

• Let P ′ be the set of processors that sent b′ to pj , so |P ′| ≥ n− f ;

• The intersection |P ∩ P ′| ≥ |P |+ |P ′| − n ≥ (n− f) + (n− f)− n = n− 2f ;

• Since f < n/3, we have n− 2f > f ;

• Therefore |P ∩ P ′| > f , meaning P ∩ P ′ contains at least f + 1 processors;

• Since at most f processors are faulty, P ∩P ′ contains at least one correct processor;

• This correct processor sent both b and b′, contradicting the fact that correct pro-
cessors send only one value at time-slot 0.

To phrase this another way, the protocol satisfies ‘Time-slot 1 Agreement ’:

34

Time-slot 1 Agreement. If pi is correct and sends b at time-slot 1, then
no correct processor sends b′ ̸= b at time-slot 1.

By the same argument, when pi goes to output at time-slot 2, it cannot be the case that
(i) holds for two distinct values of b. It follows directly from Time-slot 1 Agreement
that (ii) cannot hold for two distinct values of b, since if f + 1 processors send b to pi
at time-slot 1 then at least one is correct. This suffices to show that the protocol is
well-defined. Processors are instructed to send at most one value at each time-slot, and
the instructions suffice to specify a single output for each processor.

It is also easy to see that the protocol satisfies a form of Validity:

Validity+. If all correct processors have the same input v, then they all
output v with grade 2.

Outputting v with grade 2 also implies knowledge about the outputs of other processors:

Knowledge of Agreement. If any correct processor outputs a value b with
grade 2, then all correct processors output b.

So, if a correct processor outputs b with grade 2, then it knows all correct processors
have output b. To prove Knowledge of Agreement, note that, if a correct processor
outputs b with grade 2, then it is sent b by at least n− f processors at time-slot 1. This
means all correct processors are sent b by at least n − 2f ≥ f + 1 processors at that
time-slot.

6.2.2 Introducing tie-breaking

Where has this got us? So far, we have a simple protocol which, if all correct processors
start with the same input, causes all correct processors to give that same input as their
output with ‘grade 2’. What we haven’t achieved yet is any method for tie-breaking: if
the processors start with a mix of inputs, how to we get them to agree on some value?
The rough idea (made precise in Section 6.2.3) is as follows:

• We run f + 1 views (or ‘rounds’), each of which has a different ‘leader’.

• Processors start each view with a certain value – at the start of the first view this
is just their input.

• Each view starts with an instance of Gradecast, after which processors update
their value to be that specified by the their output in the Gradecast instance.

• After Gradecast, the leader of the view shares their value v. Each correct processor
changes their value to v unless they outputted the Gradecast instance for this view
with grade 2, before progressing to the next view (if this is not the last).

• At the end of the last view, processors output their current value.

35

If we proceed in this way, then Termination will be satisfied. It is also straightforward to
see Validity will be satisfied: if all correct processors start with the same value v, then it
follows inductively (from Validity+) that they will output each Gradecast instance with
(v, 2), and will not change their value upon hearing from the leader.

It is also straightforward to see that, after any view with a correct leader (and then at all
subsequent views), all correct processors will have the same value: if a correct processor
does not change their value to that of the correct leader because they outputted with
grade 2 in the Gradecast instance, then Knowledge of Agreement means that the leader
must anyway have the same value. It follows that Agreement will be satisfied.

6.2.3 The formal specification

The instructions are as follows (the variable r should be thought of as ranging over
views):

The instructions for pi.

Time-slot 4r (r ∈ [0, f]). Send v to all processors.

Time-slot 4r+1 (r ∈ [0, f]). If there exists b such that (at least) n− f processors
sent b to pi at time-slot 4r, then send b to all processors.

Time-slot 4r + 2 (r ∈ [0, f]). Set v and grade as follows:

(i) If there exists b such that n− f processors sent b to pi at time-slot 4r + 1,
then set v := b, grade := 2.

(ii) Otherwise, if there exists b such that f+1 processors sent b to pi at time-slot
4r + 1, then set v := b, grade := 1.

(iii) If neither of the first two cases apply, set grade := 0.

If r = i, send v to all processors.

Time-slot 4r + 3 (r ∈ [0, f]). If grade < 2 and pi has received some value b from
pr at this time-slot, set v := b.

Time-slot 4(f + 1). Output v.

6.2.4 The verification

Proof of Termination: All correct processors output at time-slot 4(f + 1).

Proof of Validity : This follows from the Validity+ property of Gradecast. If all correct
processors have the same input v then, at the end of each view, the local value grade for
a correct processor will be 2, meaning that the leader’s value will be ignored. It follows
inductively that correct processors will never change their local value v, and will output
this value.

Proof of Agreement : Consider the first view with a correct leader. From the Knowledge
of Agreement property, all correct processors will either switch to the leader’s value v, or

36

already have that value with grade 2. From Validity+ applied to later views, it follows
that correct processors will never subsequently change their value.

[Andy: Add stuff on communication complexity, and reference to Recursive Phase King
appendix.]

6.2.5 Important takeaways

We presented the proof above, rather than the original proof of Lamport, Shostak and
Pease, because it teaches some techniques that will be useful later. In particular, we
will later be considering the partially synchronous model, where solving BA is impossible
when f ≥ n/3, even with signatures. In this context, the counting argument that we
used to prove Time-slot 1 Agreement becomes one of our central tools:

If f < n/3 and processors exchange values (correct processors only sending
a single value), then there cannot exist v ̸= v′ and correct processors pi and
pj such that pi receives v from at least n− f processors, while pj receives v′

from n− f processors also.

In the coming chapters, will also see that is a very common approach to design protocols
that have instructions that are divided into views, each with a designated leader. [Andy:
Add line about early stopping? Maybe not.]

Chapter 7

State Machine Replication

In this chapter, we define the problem that ‘blockchain’ protocols have to solve, which is
called State Machine Replication (SMR). Roughly, special messages called transactions
are given to the processors over time, but some processors may receive these transactions
at different times and in a different order than others. The processors have to reach
consensus on a total ordering for the transactions, i.e., all correct processors should agree
on the same sequence of transactions. All transactions received by correct processors
should be included in this agreed sequence, called the log. For our purposes now, it does
not matter what ‘transactions’ really are: they could be instructions to transfer funds,
or, more generally, to update some database.

An important distinction between SMR and BA (or BB) is that the latter is a ‘one-
shot’ problem, requiring processors to give a single output. On the other hand, SMR
is a ‘multi-shot’ problem, requiring consensus on the first transaction, then the second,
and so on. The reader may note that each of these subproblems is like the Byzantine
Agreement problem, without exactly the same requirement for Validity. We’ll discuss
the exact relationship between SMR and BA/BB in detail later in this chapter.

Unfortunately, the literature often conflates SMR with a related problem called Total
Order Broadcast (also known as Atomic Broadcast), creating confusion about what’s
actually solvable when f ≥ n/2. Here, we’ll carefully distinguish these problems to
clarify this issue. The crucial difference involves external verifiability. In SMR, the
requirements are actually slightly stronger than those described above. Processors must
not only agree on a transaction sequence but also be able to demonstrate to outside
observers that this sequence represents genuine consensus. Total Order Broadcast does
not have this additional requirement, which we’ll show makes SMR strictly harder than
Total Order Broadcast when f ≥ n/2. These problems are often conflated because, in
ways we’ll make precise, the two problems are equivalent when f < n/2.

In the next section, we’ll formally define Total Order Broadcast (TOB). Then, in Section
7.3, we’ll define SMR. We begin with Total Order Broadcast because understanding this
simpler problem will help clarify what makes SMR more challenging.

37

38

7.1 Total Order Broadcast

The setup. Since we are principally interested in the ‘blockchain’ context, where trans-
actions are signed messages, we’ll define TOB and SMR in a model with signatures. A
transaction is just a signed message, belonging to a set of signed messages T that is
known to the protocol (given as input to all processors). We allow that messages in T
may be signed by processors outside Π. Recall, from Chapter 3, that pi ∈ Π cannot send
any message signed by a processor other than themselves until any time-slot at which
they have received a message containing this sequence.

For TOB (as for SMR), we suppose that, in addition to messages sent by processors in Π,
each processor in Π receives an arbitrary finite set of transactions at each time-slot:1 we
say such transactions are received from the environment (and when we say ‘pi receives
the transaction tr’ this means pi either receives tr from another processor or from the
environment). Since the transactions received from the environment are arbitrary in any
given execution, we can think of them as being selected by the adversary.

Sequence notation. If σ and τ are sequences, we write σ ⪯ τ to denote that σ is a
prefix of τ . We say σ and τ are compatible if σ ⪯ τ or τ ⪯ σ. If two sequences are not
compatible, they are incompatible. If σ is a sequence of transactions, we write tr ∈ σ to
denote that the transaction tr belongs to the sequence σ.

The requirements. Each processor pi is required to maintain an append-only log,
denoted logi, which at any timeslot is a sequence of distinct transactions, each of which
has been received by pi. We also write logi(t) to denote the value logi at the end of
timeslot t. The log being append-only means that for t′ > t, logi(t) ⪯ logi(t

′). We
require the following conditions to hold in every execution:

Consistency. If pi and pj are correct, then for any timeslots t and t′, logi(t) and logj(t
′)

are compatible.

Liveness. If pi and pj are correct and if pi receives the transaction tr then, for some t,
tr ∈ logj(t).

When a processor appends a transaction to its log, it is common to say it has finalised
the transaction. Roughly, Consistency requires that all correct processors finalise the
same sequence of transactions. Liveness requires that any transaction received by a
correct processor is eventually finalised by all correct processors.

Parameterising liveness. We note that our definition of Liveness stipulates that, if
pi and pj are correct and pi receives the transaction tr, then for some t, tr ∈ logj(t). So,
tr must eventually be appended to the logs of correct processors, but the requirement
does not specify a time-bound. An alternative is to require the existence of some known
bound ℓ: if pj is correct and correct pi receives the transaction tr at t, then we now
require tr ∈ logj(t) by t+ ℓ. In this case, we call ℓ the liveness parameter. Exercise 7.1
explores the extent to which insisting on the existence of some known liveness parameter
(no matter how large) strengthens the requirement for Liveness.

1If a transaction is signed by pj and is received by pi, then it arrives on the channel {i, j}. If a
transaction is signed by a processor outside Π, we have a small technical issue: which channel should the
transaction arrive on? The details are not important, but, for technical completeness, we can suppose
that each processor pi also has an extra channel {i, ∗} on which such transactions arrive.

39

Now that we have formally defined TOB, we can explore when it is solvable. We do this
in the next section.

7.2 When is TOB solvable?

In later chapters, we will consider a number of efficient protocols for solving TOB and
SMR. In this section, we do not concern ourselves with issues of efficiency. Rather, we
make the simple observation that the Dolev-Strong protocol (or any protocol for BB
that terminates in a known finite number of rounds) can be used to solve TOB for any
f ≤ n. To do so, we proceed as follows:

- As for the Phase-King protocol (Chapter 6), we divide the execution into views.
In each view, we now carry out a single instance of Dolev-Strong (consisting of
f + 1 rounds).

- We let the leader for view v be pi, where i = v mod n. So, leaders are ‘rotating’.

- If pi is the leader for view v, then they act as the broadcaster for this instance of
the Dolev-Strong protocol. Upon starting the view, they collect all transactions
received by the start of the view and not yet appended to their log. The ‘value’
they broadcast is a signed list of these transactions, indexed by the view.

- During view v, all correct processors then carry out an instance of the Dolev-Strong
protocol, with ‘default’ value ⊥. Processors ignore any ‘value’ b unless:

– b specifies a sequence of transactions in T ;

– No transaction in b already belongs to their finalised log;

– b is indexed by v.

These rules prevent Byzantine leaders from proposing invalid or duplicate trans-
actions, while view indexing prevents interference between messages from different
views.

- If a correct processor pi outputs ⊥ in the instance of Dolev-Strong for view v, then
pi does not append any transactions to their log at this stage. Otherwise, if pi
outputs b, then pi appends the sequence of transactions specified by b to their log.

This construction works because Dolev-Strong guarantees all correct processors agree on
the same value for each view, ensuring Consistency. Liveness follows because rotating
leadership ensures every correct processor is the leader of infinitely many views. Exercise
7.2 asks you to formally describe the protocol, and to give a proof that it solves SMR.

As noted earlier, the difference between TOB and SMR is that SMR also requires a form
of external verifiability. We make this precise in the next section.

40

7.3 Defining State Machine Replication

The setup. The setup is the same as for TOB, i.e., we suppose that, in addition to
messages sent by processors in Π, each processor in Π receives an arbitrary finite set of
transactions at each time-slot.

To specify the extra conditions required for SMR, there are a number of possible ap-
proaches. One very interesting approach, described in a recent paper by Sridhar, Tas,
Neu, Zindros, and Tse [12], has in common with many previous definitions that one
introduces a new class of participant called clients. In the treatment of Sridhar et al.,
however, clients may be of different kinds. For example, they may be always active and
observing the protocol (receiving messages sent by processors in Π), or they may only
be active at certain time-slots. Clients may have the ability to pass on messages they
receive or not, and so on. In this way, one can define a number of different versions of
SMR, which they show are often not equivalent to each other.

Here, we take a simple approach which avoids the need to explicitly introduce clients,
and which succinctly encapsulates the distinction between TOB and SMR, and the
reason SMR is not solvable when f ≥ n/2. Our approach also works tidily in more
complex scenarios, such as when we come to consider player reconfiguration (considered
in Chapter 21).

The basic idea behind the approach is as follows. Suppose an interested party arrives
part way through an execution, and asks a processor pi (that may not be correct) for the
current value of the log. How can pi prove to this party that the sequence of transactions
σ has been finalised? The only information that pi has to build such a proof is the signed
messages it has received. Moreover, pi has no way of proving the order in which it has
received those messages. So, the set of messages it has received is the only ingredient
from which to construct the required proof. Next, we present the formal details.

The requirements. In this section, we use the following notation when discussing any
execution of a protocol:

• Mpi(t) denotes the set of messages received by processor pi by timeslot t;

• M∗ denotes the set of all messages received by any processor during the execution.

If P is a protocol for SMR, then it must specify a function F , which may depend on Π
and T , that maps any set of messages M to a sequence of transactions, each in T ∩M .
We require the following conditions to hold in every execution (for any M1,M2, pi, pj
and any transaction tr): [Andy: can simplify def of Consistency slightly, but would then
have to modify subsequent proofs.]

Consistency. If M1 ⊆ M2 ⊆ M∗, then F(M1) ⪯ F(M2).

Liveness. If pi and pj are correct and if pi receives the transaction tr then, for some t,
tr ∈ F(Mj(t)).

At any time-slot t, pi sets logi(t) = F(Mpi(t)).

This definition of consistency ensures that correct processors never finalise incompatible
sequences: for any sets of messages M1,M2 ⊆ M∗ that two such processors might have

41

received, F(M1) ⪯ F(M1∪M2) and F(M2) ⪯ F(M1∪M2). We say a set of messages M
is a certificate for a sequence of transactions σ if F(M) ⪰ σ: intuitively, any processor
can present the set of messages M to an interested party that has not been observing
the execution as proof that it has finalised a sequence of transactions extending σ.

It is clear that any protocol solving SMR also solves TOB. In the next section, we show
that, unlike TOB, SMR is not solvable when f ≥ n/2. We also demonstrate a precise
equivalence between the two problems when f < n/2 (in the context of fixed processor
sets Π that we focus on here).

7.4 When is SMR solvable?

First, we’ll show that SMR is not solvable when f ≥ n/2. The proof is a simple
indistinguishability argument.

Theorem 7.1. Consider the lock-step model with signatures. No protocol solves SMR
when f ≥ n/2.

Proof. Suppose f ≥ n/2. Partition Π into two sets of processors P0 and P1, so that
|P0| = f and |P1| = n − f . Let tr0 and tr1 be distinct transactions, each signed by
a processor outside Π, and set T = {tr0, tr1}. We consider three executions of the
protocol. In all three executions of the protocol, processors in Pi (i ∈ {0, 1}) receive
tri from the environment at time-slot 0, and receive no further transactions from the
environment. Let F be the function specified by the protocol, with respect to which it
satisfies Consistency and Liveness.

Execution 0. Processors in P0 are correct, while processors in P1 are faulty and perform
no action at any time-slot. Since |P1| = n − f ≤ f , at most f processors are faulty.
By Liveness, all processors in P0 must finalise tr0 as the first transaction in their log by
some time-slot, t0 say. Let M0 be the set of all messages received by correct processors
by t0.

Execution 1. Processors in P1 are correct, while processors in P0 are faulty and perform
no action at any time-slot. Since |P0| = f , at most f processors are faulty. By Liveness,
all processors in P1 must finalise tr1 as the first transaction in their log by some time-slot,
t1 say. Let M1 be the set of all messages received by correct processors by t1.

Execution 2. Processors in P1 are correct. Processors in P0 are faulty and ‘simulate’
Execution 0. This means they act correctly, except that they ignore messages from
processors in P1, and do not send messages to processors in P1, i.e., at each time-slot
they follow the instructions given by the state-transition-diagram, except that:

- Messages from processors in P1 are dropped when determining which messages to
send and which state x to transition to, and;

- They then transition to state x and send messages to processors in P0 as specified
by the state-transition-diagram, but do not send messages to processors in P1.

Let M∗ be the set of all messages received by processors in Execution 2.

42

Contradicting Consistency. [Andy: Modify this if I change definition of Consistency.]
Now let us analyse the messages in M∗. Note that F(M0) = tr0 and F(M1) = tr1. Since
Execution 2 is indistinguishable from Execution 1 for processors in P1, it follows that
M1 ⊆ M∗. Since the processors in P0 simulate Execution 0 in Execution 2, M0 ⊆ M∗.
So, M0 ⊆ M0 ∪M1 ⊆ M∗ and M1 ⊆ M0 ∪M1 ⊆ M∗. However, it cannot be the case
that both F(M0) ⪯ F(M0 ∪ M1) and F(M1) ⪯ F(M0 ∪ M1): since F(M0) = tr0 and
F(M1) = tr1 are distinct transactions, they can’t both be prefixes of the same sequence.
So, Consistency is not satisfied.

Theorem 7.1 shows that SMR and TOB are not equivalent. To show that SMR is
possible when f < n/2 in the lock-step model with signatures, we observe that it is
actually simple to convert any protocol for TOB into a protocol for SMR. To see this,
consider any protocol for TOB (satisfying the corresponding Liveness and Consistency
requirements). Then proceed as follows:

• Add an instruction that, at every time-slot t, pi should send the signed message
⟨finalised, logi(t)⟩i to all other processors.

• To specify F , consider any set of messages M . Let σ be the longest sequence
of transactions such that, for more than n/2 distinct values of i, M contains a
message ⟨finalised, τ⟩i such that σ ⪯ τ .

So, processors send out signed messages testifying to their present log. If any processor
receives more than n/2 signed messages testifying to having finalised σ, the existence
of this set of signed messages is proof that a correct processor has finalised σ. It’s
straightforward to check that Consistency and Liveness for the SMR protocol follow
from satisfaction of the corresponding properties for the TOB protocol (you are invited
to check).

Since any protocol for SMR solves TOB, the reduction above gives a precise sense in
which the two problems are equivalent when f < n/2. In fact, this equivalence does
not only hold in the lock-step model with signatures. It also holds in the partially
synchronous and asynchronous models, which we will define in Chapter 8.

So far, we have considered reductions between SMR and TOB. In the next section, we’ll
consider reductions between SMR and BB/BA.

7.5 Reductions between SMR and BA/BB

In this section, we’ll briefly consider how to transform protocols for SMR into protocols
for BB and BA, and vice versa. Since we’ve already considered reductions between
BA and BB in Chapter 4, it suffices to consider BB. As in all previous sections of this
chapter, we consider the lock-step model with signatures.

Reducing SMR to BB. To reduce the task of solving SMR to solving BB, we enu-
merate some observations:

- We already saw in Section 7.2 that any protocol for BB that terminates in a known
finite number of rounds can be used to solve TOB for any f ≤ n.

43

- Exercise 7.1 walks you through a proof that (so long as the set of possible values
V is finite) any deterministic protocol for BB can be straightforwardly converted
into one that terminates in a known finite number of rounds (where that number
may depend on Π, f , and V).

- We saw in Section 7.4 that any protocol for TOB can be straightforwardly trans-
formed into a protocol for SMR when f < n/2. In the lock-step model with
signatures, this is precisely when SMR is solvable.

Under the assumption that only finitely many distinct sequences of transactions can
be received from the environment by any fixed time-slot t, these observations provide
a straightforward conversion between BB protocols and SMR protocols if and only if
f < n/2. The restriction on sequences of transactions received from the environment
is only required if the given BB protocol does not already terminate in a known finite
number of rounds.

Reducing BB to SMR. In the opposite direction, suppose we have an SMR protocol
and we want to solve BB. The key insight is that we can use the SMR protocol to order
values received from the broadcaster. We treat values received as transactions, run
the SMR protocol to establish a total order of these ‘input transactions’, then output
according to some deterministic rule applied to this ordered sequence.

A difficulty is that the broadcaster might not send any values: in this case, we need a
bound on how long we should run the SMR protocol, after which processors can output
some default value if their logs are empty. If the transaction set T is finite, Exercise 7.1
walks you through a straightforward way of converting any deterministic SMR protocol
into one with a known liveness parameter ℓ(t), i.e., such that any transaction received
by a correct processor by time-slot t will be finalised by all correct processors by t+ ℓ(t).
Whether or not the transaction set is finite, suppose we have an SMR protocol satisfying
the condition that any transaction received by a correct processor by time-slot 1 will
be finalised by all correct processors by some known time-slot, t1 say, and that any
transaction received by a correct processor by time-slot t1 + 1 will be finalised by all
correct processors by some known time-slot t2. To solve BB with input set V given the
latter protocol, we can then proceed as follows:

• Let the transaction set T be values in V signed by the broadcaster, together with
the ‘default’ value ⊥ signed by each processor;

• At time-slot 0, the broadcaster is instructed to send their signed value to all pro-
cessors;

• From time-slot 1 until time-slot t1 all processors execute the SMR protocol;

• At time-slot t1, each processor is instructed to sign the default value ⊥ and send
it to all processors;

• At time-slot t2, processors inspect the first f + 1 finalised values in their log. If
any of these are transactions signed by the broadcaster, they output the first such
value in their log. Otherwise, they output ⊥.

This works because the SMR protocol ensures all correct processors agree on the same
ordered sequence of transactions, and applying the same deterministic rule to this se-
quence ensures they produce the same BB output. Our choice of t1 and t2 ensures

44

that all correct processors have more than f + 1 transactions in their log by t2. If the
broadcaster is correct, their signed value must appear in the finalised logs of all cor-
rect processors by t1, and at most f other transactions can be finalised by any correct
processor at that time.

7.6 Exercises

Exercise 7.1. Consider strings of natural numbers, and say a set A of such strings is
downward closed if, whenever σ ∈ A, all initial segments of σ also belong to A. We’ll
say an infinite string is a path through A if all finite initial segments of the infinite
string belong to A. Let |σ| denote the length of the finite string σ. If σ and τ are finite
strings with σ ⪯ τ and |τ | = |σ|+ 1, we say τ is a one-element extension of σ. The
set of finite strings A is finitely branching if, for every σ ∈ A, there are only finitely
many one-element extensions of σ in A.

(i) Show that if A is a set of finite strings of natural numbers that is infinite, downward
closed and finitely branching, then there exists an infinite string which is a path
through A. Hint: use a proof by induction. Observe that the empty string (of
length 0) has infinitely many extensions in A. Then argue that, since A is finitely
branching and infinite, some string of length 1 must also have infinitely many
extensions in A, and so on.

(ii) For the rest of the question, consider a fixed deterministic SMR protocol, P say.
In Sections 7.1 and 7.3, we allowed transactions (as binary strings) to be of ar-
bitrary length. However, let us now suppose that there are finitely many possible
transactions, i.e., that T is finite. Consider executions of P in which all processors
are correct and show that, for each t, there are only finitely many runs of length t
(recall the definition of a run from Section 5.2.1).

(iii) Use (i) and (ii) above to argue that, for executions of the protocol in which all
processors act correctly, there exists some bound ℓ(t) such that any transaction
received by a correct processor by time-slot t must be finalised by t+ ℓ(t).

(iv) Argue that, by ignoring overly long messages, P can be straightforwardly converted
into a protocol for which the claim of (iii) also holds in a context where some
processors may be Byzantine.

(v) Modify your arguments above to show that, when V is finite, every deterministic
protocol solving BB can be straightforwardly converted into one that terminates in
a finite number of rounds.

Exercise 7.2. Write down a formal description of the protocol considered in Section
7.2, and prove that it solves SMR.

Chapter 8

The asynchronous and partially
synchronous models

So far, we have described results that hold for the lock-step and synchronous models.
However, real distributed systems sometimes face unpredictable network delays, meaning
that the timing assumptions of these models may be unrealistic. For this reason, we’ll
next introduce the asynchronous and partially synchronous models. The asynchronous
model, described in Section 8.1, is the most difficult to operate in. In fact, we show in
Section 8.2 that no deterministic protocol can solve BA, SMR or BB in this model. In
Section 8.3, we then introduce the partially synchronous model, which may be seen as
a middle ground - periods of reliable communication interrupted by arbitrary delays.

8.1 The asynchronous model

In fact, we’ll define two simple variants of the asynchronous model. First, we consider
the asynchronous model with synchronised clocks.

The asynchronous model with synchronised clocks. This is the same as the
synchronous model, except that there is no bound on how long messages take to arrive.
The only guarantee on message delivery is that any message sent from any correct
processor pi to any correct processor pj must eventually be received at some time-slot.

While guaranteed message delivery may seem strong, it captures the essential property
that reliable transport protocols (like TCP) provide in practice. The point is that
eventual delivery between correct processors can be guaranteed by repeated resending.

We say ‘clocks are synchronised’ for this model, because every processor begins the
execution simultaneously at time-slot 0 and carries out one transition (as specified by
their state-transition-diagram) at each time-slot.1 However, in the standard version
of the asynchronous model, described next, we do not assume this lock-step form of
computation.

The asynchronous model. Roughly, this is the same as the asynchronous model with
synchronised clocks, except that we now allow arbitrary deviation in the rate at which

1Recall the state-transition-diagram model, as described in Chapter 3.

45

46

each processor’s internal clock progresses. To formalise this idea, we expand the state-
transition-diagram model of Chapter 3, by further stipulating that, at each time-slot,
each processor may be active or inactive. If active, then the processor receives messages
and carries out one step of the instructions as specified by the state-transition-diagram.
If inactive at time-slot t, then the processor does not receive messages and performs no
instructions, remaining in the same state until the next time-slot. In each execution, a
correct processor may be active or inactive at arbitrary time-slots, but must be active
at infinitely many time-slots: one may think of the allocation of active time-slots for pi
as being chosen by the adversary subject to this constraint.

The guarantee for message delivery is that, if correct pi sends a message to correct pj ,
then there must exist some time-slot at which pj (is active and) receives the message.

Why two models of asynchrony? We consider both variants because our main im-
possibility result for the asynchronous model holds even with synchronised clocks, which
is particularly relevant given modern clock synchronisation capabilities. In this book, all
positive results that hold for the asynchronous model with synchronised clocks will also
hold for the standard asynchronous model without synchronised clocks (synchronised
clocks are not very useful when message delays are arbitrary).

Having established these models, we can now ask: do the positive results for the lock-
step and synchronous models extend to the asynchronous model? The answer, as we’ll
prove next, is surprising and fundamental to understanding the limits of distributed
computation.

8.2 Deterministic consensus is not possible in asynchrony

In this section, we prove the following theorem.

Theorem 8.1. Consider the asynchronous model with synchronised clocks, crash-faults,
and with signatures. No deterministic protocol solves (binary) BA for f ≥ 1 and n ≥ 2.

Theorem 8.1 is often known as the ‘FLP Theorem’, because a version for the asyn-
chronous model (without synchronised clocks) was first proved by Fischer, Lynch and
Paterson [13]. Here we’ll give a simpler proof, which follows the approach used in a blog
post by Abraham and Stern,2 itself based on approaches developed by Gafni and Losa
[14] and Volzer [15].

High level intuition. Recall that, in Section 5.2, we proved that f + 1 rounds are
necessary for protocols solving BA in the lock-step model. To do so, we considered the
notion of a k-run, which is just a description of the first k time-slots of an execution. We
also defined the notion of a bivalent run, which is a run for which the output of correct
processors has not yet been determined, i.e., a run r for which there exist executions E
and E′ extending r such that correct processors output differently in E than in E′. We
started by showing that, for any protocol, there must exist a 0-run (i.e., a set of inputs)
that is bivalent. Then we carried out a proof by induction to show that some f -run
must be bivalent.

2https://decentralizedthoughts.github.io/2024-03-07-mobile-is-FLP/

https://decentralizedthoughts.github.io/2024-03-07-mobile-is-FLP/

47

At a high level, the approach we take to prove Theorem 8.1 is very similar. We start by
showing that some 0-run must be bivalent. Now, however, we carry out a proof which
recursively builds a bivalent execution, i.e., an execution in which correct processors
never output.

To describe the proof, we first recall the precise definition of a k-run, and also introduce
some other useful terminology.

8.2.1 k-runs and pivots

Towards a contradiction, we suppose given a protocol P that solves binary BA in the
asynchronous model with synchronised clocks and crash-faults, when f = 1 and n ≥ 2.
Fixing some n ≥ 2, we let E be the set of all executions of P in this model, for a given
set of processors Π with |Π| = n.

Defining runs. We consider a notion of k-run which is adapted slightly from that in
Section 5.2.1 to incorporate the fact that we are now working in a different model:

• By a 0-run (think of a ‘run of length 0’), we mean a specification of the input (0
or 1) to each processor.

• If k ≥ 1, by a k-run we mean a specification of:

(i) The input to each processor;

(ii) The messages sent by each processor at each time-slot < k;

(iii) The messages received by each processor at each time-slot ≤ k, and;

(iv) Which processors crashed at each time-slot < k.

By a run, we mean a k-run, for some k. As in Section 5.2.1, we define whether one run
extends another in the obvious way. If r is a k-run and r′ is a k′-run with k′ ≥ k, we
say r′ extends r if: (i) in r′, all processors receive the same inputs as in r; (ii) at each
time-slot < k, the messages sent by each processor are the same in r′ as in r; (iii) at
each time-slot ≤ k, the messages received by each processor are the same in r′ as in r,
and; (iv) at each time-slot < k, the same processors crash in r′ and r. If these conditions
are satisfied and k′ > k, then r′ properly extends r. We also extend this terminology in
the obvious way to executions. So, if E ∈ E is an execution and r is a k-run, we say E
extends (or is an extension of) r if the conditions above hold when r′ is replaced by E.

It will also be useful to consider the new notion of a pivot, which is a particular type of
bivalent run. We define this next.

Pivots. To specify pivots precisely, we make the following definitions:

- A run r is crash-free if no processor crashes in r. We let Rk be the set of crash-free
k-runs extended by some execution in E , and set R =

⋃
k∈NRk.

- If r ∈ Rk, then E(r) is the unique execution in E extending r in which no processor
crashes, messages sent in r but not received in r are received at time-slot k+1, and
all messages sent at time-slots ≥ k are received at the next time-slot. So, roughly,
E(r) is the extension of r in which no processor crashes, and message delivery is
‘lock-step’ after time-slot k.

48

- If r ∈ R, we let val(r) be the value output by all processors in E(r). This value must
be well-defined, because E(r) ∈ E and P satisfies Termination and Agreement.

- If r ∈ Rk then E(r−p) is the unique execution in E extending r in which p crashes
without sending any messages at time-slot k, messages sent to processors other
than p in r but not received in r are received at time-slot k + 1, and all messages
sent to processors other than p at time-slots ≥ k are received at the next time-slot.
Since f = 1, this means no processor other than p crashes in E(r−p). So, roughly,
E(r − p) is the extension of r in which only p crashes, and message delivery is
otherwise ‘lock-step’ after time-slot k.

• If r ∈ R, we let val(r−p) be the value output by all correct processors in E(r−p).
Again, this value must be well-defined, because E(r − p) ∈ E and P satisfies
Termination and Agreement.

• We say r is a p-pivot if r ∈ R and val(r) ̸= val(r − p). If r is a p-pivot for some
p ∈ Π, we also say r is a pivot.

So, if r ∈ Rk is a p-pivot, this means r is a specific form of bivalent run: if we restrict to
executions in which no processor other than (perhaps) p crashes and message delivery
to non-crashed processors is lock-step after k, then whether or not p crashes at time-slot
k changes how correct processors output.

With these definitions in place, we are ready to describe the formal proof.

8.2.2 The proof of Theorem 8.1

Let P be as specified in Section 8.2.1. As hinted at previously, the basic form of the
proof is simple. We start by showing that some 0-run is a pivot. Then we show that each
pivot can be properly extended to give another pivot. Iterating this argument produces
an execution in E in which correct processors do not output.

We begin by showing that some 0-run is a pivot, using a proof very similar to the proof
of Lemma 5.3 in Section 5.2.4.

Lemma 8.2. Some 0-run is a pivot.

Proof. Towards a contradiction, suppose no 0-run is a pivot. Recall that the set of
processors is Π = {p0, . . . , pn−1}. For each i ∈ [0, n], let ri be the 0-run in which all
processors pj for j < i receive input 1, while all other processors receive input 0. Since
P satisfies Validity, it follows that val(r0) = 0, while val(rn) = 1. From this it follows
that there exists i ∈ [0, n) such that val(ri) = 0, while val(ri+1) = 1. The only difference
between ri and ri+1 is the input received by pi. Since E(ri − pi) and E(ri+1 − pi) are
indistinguishable for processors other than pi, val(ri − pi) = val(ri+1 − pi). So, either
val(ri − pi) = 1 ̸= val(ri) or val(ri+1 − pi) = 0 ̸= val(ri+1), meaning that either ri is a
pi-pivot, or ri+1 is a pi-pivot. This gives the required contradiction.

Next, we show that each pivot can be properly extended to give another pivot. Claim (ii)
of the following lemma will be used to ensure that repeated applications of the lemma
produce a valid execution without infinite message delays.

49

Lemma 8.3. If r is a p-pivot, then it has a proper extension r′ satisfying:

(i) The run r′ is a p′-pivot for p′ ̸= p.

(ii) All messages sent by processors other than p in r′ are received in r′.

Proof. The proof of Lemma 8.3 is divided into two parts. Suppose r is a p-pivot. First,
we use an argument similar to the proof of Lemma 8.2 to produce ra and rb, which are
two proper extensions of r with val(ra) ̸= val(rb). Then, we describe a sequence of runs
ra = r0, . . . , rn−1 = rb, such that each ri differs from ri+1 by when a single processor
receives certain messages from p. Since there must exist i with val(ri) ̸= val(ri+1), this
allows us to argue that either ri or ri+1 is a p′-pivot for some p′ ̸= p. Now let us fill in
the details.

Part 1: specifying ra and rb. Let k be such that r ∈ Rk. Since r is a p-pivot, we
have that val(r) ̸= val(r − p). The rough idea in specifying ra and rb is to use the fact
that all correct processors must output by some finite time in E(r − p). If we define r∗ℓ
(for each ℓ ≥ 1) to proceed in lock-step at time-slots after k, except that messages sent
by p at time-slots ≥ k are not received until time-slot k+ ℓ, then for all sufficiently large
ℓ, we must have val(r∗ℓ) = val(r − p). Since val(r) = val(r∗1) ̸= val(r∗ℓ) = val(r − p) for
sufficiently large ℓ, there must exist some least ℓ with val(r∗ℓ) ̸= val(r∗ℓ+1). Then we can
use r∗ℓ and r∗ℓ+1 (or appropriate modifications of these runs) as ra and rb.

More precisely, for each ℓ ≥ 1 we define r∗ℓ to be the run in Rk+ℓ extending r, such that
messages sent in r but not received in r are received at time-slot k + 1, messages sent
by processors other than p at time-slots ≥ k are received at the next time-slot, and all
messages sent by p at time-slots ≥ k are received at time-slot k + ℓ. So, r∗ℓ proceeds in
‘lock-step’ at time-slots after k, except that messages from p are delayed until time-slot
k + ℓ. Note that E(r) = E(r∗1), so that val(r) = val(r∗1).

Since P satisfies Termination, we can take t sufficiently large that all correct processors
output before time-slot k + t in E(r − p). Note that E(r − p) is indistinguishable
from E(r∗k+t) until time-slot k + t for processors other than p, i.e., all other processors
receive the same inputs and the same messages at time-slots < k + t. It follows that
val(r) = val(r∗1) ̸= val(r − p) = val(r∗k+t). So, there must exist some least ℓ ≥ 1 with
val(r∗ℓ) ̸= val(r∗ℓ+1). We set ra = r∗ℓ ∈ Rk+ℓ, and we set rb to be the element of Rk+ℓ

extended by r∗ℓ+1.

Part 2: finding r′. Without loss of generality suppose the processors are numbered so
that p = pn−1. Let ra and rb be defined as above. For each i ∈ [0, n−1], let ri ∈ Rk+ℓ be
the same as ra, except that, for each 0 ≤ j < i, processor pj does not receive messages
from p at time-slot k + ℓ. Note that ra = r0 and rn−1 = rb. It follows that there
exists some least i with val(ri) ̸= val(ri+1). However, the only difference between ri and
ri+1 is the messages received by pi, which means that E(ri − pi) and E(ri+1 − pi) are
indistinguishable for processors other than pi. So, val(ri−pi) = val(ri+1−pi). It follows
that either val(ri − pi) ̸= val(ri) or val(ri+1 − pi) ̸= val(ri+1), meaning that either ri
is a pi-pivot, or ri+1 is a pi-pivot. Note also that pi ̸= p and that, for r′ ∈ {ri, ri+1},
all messages sent by processors other than p in r′ are received in r′. So r′ exists, as
claimed.

50

Completing the proof of Theorem 8.1. Combining Lemmas 8.2 and 8.3 produces
an infinite sequence of pivots r0, r1, . . . , such that each ri+1 properly extends ri. If ri is
a p-pivot, then ri+1 is a p′-pivot for p′ ̸= p, and all messages sent by processors other
than p in ri+1 are received in ri+1. It follows that any message sent in ri is received in
ri+1, so that the sequence r0, r1, . . . specifies a valid execution in E in which all messages
are eventually received and correct processors do not output.

How about SMR and BB? While Theorem 8.1 is stated for binary BA, it is straight-
forward to modify the proof to give the same result for SMR (Exercise 8.1). In Section
8.4, we will give a direct proof that (unlike BA and SMR) no protocol solves BB for
f ≥ 1 in the partially synchronous model: this implies that BB is also impossible in
asynchrony.

The FLP Theorem shows that deterministic consensus faces insurmountable barriers in
asynchronous settings. However, as we’ll see next, adding even minimal timing assump-
tions can restore the possibility of consensus.

8.3 Defining the partially synchronous model

The partially synchronous model was introduced by Dwork, Lynch and Stockmeyer
[16]. The model captures a realistic network setting where SMR protocols must main-
tain Consistency even during periods of unreliable communication, whilst finalising new
transactions given sufficiently long periods of synchrony. The formal definition employs
a technical approach that simplifies theorem proving but can initially seem disconnected
from this intuitive description. We’ll present the formal definition first, then explain
how it captures the intended behaviour.

As for the asynchronous setting, we’ll define two variants of the partially synchronous
model: one with synchronised clocks, and then the standard version, which does not
assume synchronised clocks.

The partially synchronous model with synchronised clocks. This model is the
same as the synchronous setting, except that message delivery guarantees are now as
follows: there exists a known bound ∆ (given as input to each processor) and an unknown
time-slot called the global stabilisation time (GST), such that any message sent at any
time-slot t is received by time-slot max{t,GST}+∆.

So, in this model there is no known upper bound on message delivery times, but, af-
ter some unknown point that may vary between executions, messages will always be
delivered within ∆ time-slots. It is common to think of GST as chosen by the adversary.

Matching the intuition. How does this formal definition capture the intuitive picture
described above? Suppose first that we have an SMR protocol that satisfies Consistency
and Liveness in the formal model defined above. Then Consistency must be maintained
in asynchrony, because any Consistency violation must occur within a finite amount of
time. Since GST is arbitrarily large and unknown, an asynchronous execution in which
Consistency is violated gives an execution consistent with the formal model above in
which there is also such a violation: run the asynchronous execution until Consistency
is violated, and then make message delivery lock-step thereafter. Equally, the protocol
must finalise new transactions given any sufficiently long synchronous interval, because

51

the adversary may choose GST to be the start of the given interval, and then Liveness
requires that new transactions be finalised in a finite amount of time.

Conversely, suppose we have a protocol that maintains Consistency in asynchrony and
finalises transactions during sufficiently long synchronous periods. This protocol auto-
matically works in the formal model we have defined: Consistency is preserved because
the protocol handles arbitrary message delays (which includes the pre-GST period),
whilst Liveness is ensured because any execution eventually reaches GST, after which
the protocol operates under the synchronous conditions it requires for progress.

Next, we define the standard version of the partially synchronous model, which does not
assume synchronised clocks.

The partially synchronous model. Recall the notion of inactive time-slots, intro-
duced in Section 8.1. The partially synchronous model is the same as the partially
synchronous model with synchronised clocks, except that correct processors may be in-
active at any arbitrary set of time-slots prior to GST (while being active at all other
time-slots, including all time-slots ≥ GST). It is common to think of the adversary as
choosing the time-slots before GST at which processors are inactive.

All of the impossibility results we prove for the partially synchronous model in this book
will also hold for the variant with synchronised clocks. Sometimes it will be convenient
to prove positive results first for the variant with synchronised clocks, and then show
how to modify the proof to deal with the version without synchronised clocks.

Other versions of the partially synchronous model. Another variant of the model
allows correct processors to have ‘clock speeds’ after GST that may be different from each
other by some bounded amount. Formally, we might specify some known values d1 < d2
and require that, in each interval of d2 time-slots after GST, each correct processor is
active in at least d1 time-slots. Clearly, any impossibility result for our version of partial
synchrony also holds for this variant. The proofs of all of our positive results for the
standard partial synchrony model can also be straightforwardly transformed to give a
proof for this variant.

Yet another model that is sometimes referred to as the partially synchronous model drops
the concept of GST altogether. In this model, some bound ∆ on message delivery times
always holds. However, ∆ is now unknown, i.e., ∆ is not given to the processors as input.
This means a protocol must function for any finite ∆ without knowing this value. As
always, one could consider various versions of this model, with or without synchronised
clocks. For the sake of simplicity, let us consider a version with synchronised clocks, and
let’s call this the ‘unknown ∆’ model.

So long as we are not concerned with matters of efficiency, the partially synchronous
model with synchronised clocks and the ‘unknown ∆’ model are equivalent: we can
convert a protocol for one model into one for the other. A protocol for the ‘unknown ∆’
model is already a protocol for the partially synchronous model with synchronised clocks
because, in any execution consistent with the latter model, all messages are delivered
within ∆′ :=GST+∆ time-slots. In the other direction, suppose we have a protocol
for the partially synchronous model with synchronised clocks. To convert this into a
protocol for the ‘unknown ∆’ model, we can give processors the input ∆ = 1, and then
insert increasing intervals between the time-slots at which correct processors execute
their instructions, e.g., processors might implement the instructions for time t at real

52

time 2t (efficiency considerations aside). Although the actual bound ∆ on message
delivery times is unknown, the interval between time-slots at which instructions are
implemented is eventually larger than ∆.

In the next section, we consider for which f and n consensus is possible in the partially
synchronous model.

8.4 When is consensus possible in partial synchrony?

We start with a negative result for BB.

Theorem 8.4. Consider the partially synchronous model with synchronised clocks, crash-
faults, and with signatures. No protocol solves BB if f ≥ 1 and n ≥ 2.

Proof. The proof is a simple indistinguishability argument. We suppose such a protocol
exists, and consider two executions of the protocol with ∆ = 1, and with the same
processor acting as broadcaster.

Execution 1. The broadcaster is faulty and crashes at time-slot 0. GST = 0. To satisfy
Termination and Agreement, all other processors must eventually give the same output.
Without loss of generality, suppose they all output 0 by some time-slot, t∗ say.

Execution 2. All processors are correct. The broadcaster has input 1. GST > t∗.
Prior to GST, messages between all processors other than the broadcaster are received
at the time-slot after sending, but messages from the broadcaster are not received until
GST.

Prior to GST, Executions 1 and 2 are indistinguishable for processors other than the
broadcaster. So, processors other than the broadcaster output 0 in Execution 2, i.e.,
they give the same output as in Execution 1. Validity is therefore violated.

Having shown BB is impossible with even one crash fault, we now examine BA and
SMR. Dwork, Lynch, and Stockmeyer showed that, for Byzantine faults, SMR and BA
are solvable if and only if f < n/3 [16]. Next, we prove the negative part of that result.
The theorem is stated and proved explicitly for BA, but the proof is straightforwardly
modified to give the same result for SMR (Exercise 8.2). Of course, the impossibility
result for the case with synchronised clocks immediately gives the result for the case
without synchronised clocks.

Theorem 8.5. Consider the partially synchronous model with synchronised clocks, Byzan-
tine faults, and with signatures. No protocol solves BA if f ≥ n/3.

Proof. Towards a contradiction, suppose such a protocol exists. Fix n and f , with
f ≥ n/3. Partition Π into three sets, P0, P1 and P2, such that |P2| = f , while |P0| ≤ f
and |P1| ≤ f . We consider three executions of the protocol with ∆ = 1.

Execution 0. All processors have input 0. Processors in P1 are faulty and perform no
action, while other processors are correct. GST = 0. All correct processors must output
0. Suppose they all do so by t0.

53

Execution 1. All processors have input 1. Processors in P0 are faulty and perform no
action, while other processors are correct. GST = 0. All correct processors must output
1. Suppose they all do so by t1.

Execution 2. Processors in P0 receive input 0 (as in Execution 0), while processors in
P1 receive input 1 (as in Execution 1). The inputs to processors in P2 are unimportant
(0, say). Processors in P0 ∪ P1 are correct, while processors in P2 are faulty. GST
> max{t0, t1}. Prior to GST, message delivery is as follows:

- Messages between processors in P0 ∪ P2 are received the time-slot after sending.

- Messages between processors in P1 ∪ P2 are received the time-slot after sending.

- Messages between processors in P0 and processors in P1 (in either direction) are
not received until GST.

Prior to GST, processors in P2 ‘simulate’ Execution 0 for processors in P0, i.e., they
send them precisely the same messages at the same time-slots. They can do this, even
though we consider a model with signatures, because processors in P2 receive the same
messages from processors in P0 as in Execution 0. Similarly, processors in P2 ‘simulate’
Execution 1 for processors in P1, i.e., they send them precisely the same messages at
the same time-slots.

Analysis. Note that, in Execution 2, the task of simulating Execution 0 just requires
processors in P2 to send precisely the same messages to processors in P0 that they would
if correct with input 0, and if receiving no messages from processors in P1. Similarly,
simulating Execution 1 just requires emulating correct behaviour if given input 1 and
not receiving messages from processors in P0.

The crucial point is that, until GST, Execution 2 is indistinguishable from Execution 0
for processors in P0, i.e., those processors receive the same inputs and receive precisely
the same messages at each time-slot. Since they output 0 prior to t0 in Execution 0,
they must do the same in Execution 2. Symmetrically, processors in P1 must output 1,
violating Agreement.

In the next chapter, we’ll describe a simple protocol (a variant of Tendermint [17]) that
solves SMR in the partially synchronous model with synchronised clocks and signatures
when f < n/3. Solving SMR in this setting also suffices to solve BA:

• Given an SMR protocol satisfying Consistency and Liveness when f < n/3, let
the transaction set T be values in the input set V signed by processors in Π.

• Require correct processors to send their signed input to all other processors at
time-slot 0.

• Run the SMR protocol from time-slot 1, until some shortest sequence of transac-
tions σ is finalised that includes values in V signed by n− f different processors.

• Consider the set of ‘voting’ processors to be those with signed values in σ. Each
voting processor ‘votes for’ their first signed value in σ. Determine the output
by majority vote amongst voting processors, breaking ties by some predetermined
rule.

54

By Consistency and Liveness for the SMR protocol, the process above terminates, with
all correct processors giving the same output. So, Termination and Agreement are
satisfied. If all correct processors have the same input, v say, then at least n− 2f of the
n − f voting processors must vote for v. Since n > 3f , this is a majority of the voting
processors, so all correct processors output v. Validity is therefore satisfied.

Next, we turn to protocol design, beginning with a streamlined version of Tendermint
that illustrates some of the key principles underlying modern partially synchronous SMR
protocols.

8.5 Exercises

Exercise 8.1. [Andy: Walk through how to prove a version of Theorem 8.1 for SMR.]

Exercise 8.2. [Andy: Walk through how to modify proof for BA to show that SMR is
not possible in ps for f ≥ n/3].

Chapter 9

Tendermint

[Andy: Add comment that Tendermint is actually used by many blockchains today.]
In this chapter, we describe and analyse Tendermint, which is a very simple protocol
solving SMR when f < n/3 in the partially synchronous model. In Section 9.2, we first
describe a version that assumes synchronised clocks. In Section 9.3, we then describe
a ‘pipelined’ version of the protocol, which overlaps consensus instances to increase
throughput whilst maintaining safety guarantees. This pipelined version of the protocol
is essentially Casper [18], the finality mechanism presently employed by the Ethereum
blockchain. Finally, in Section 9.4, we show how to modify the protocol to work in the
partially synchronous model without synchronised clocks.

We begin with synchronised clocks to focus on the core consensus mechanism. However,
before we get to Tendermint, we first need to cover some standard techniques: the use
of collision-free hash functions and quorum intersection arguments. We introduce these
in the next section.

[Andy: Add comment that Tendermint was introduced by Buchman, and give the date.]

9.1 Preliminary techniques

In this section, we discuss some standard techniques that will be useful throughout the
remainder of the book. First, we introduce collision-free hash functions.

9.1.1 Building ‘blockchains’ with collision-free hash functions

In Section 7.2, we described a simple protocol for solving TOB in the synchronous model,
which can also be straightforwardly converted into a protocol for SMR when f < n/2
(see Section 7.4). At a high level, the approach taken was as follows:

- We divide the execution into views. In each view, we carry out a single instance
of Dolev-Strong.

- We let the leader for view v be pi, where i = v mod n. So, leaders are ‘rotating’.

55

56

- If pi is the leader for view v, then they act as the broadcaster for this instance of
the Dolev-Strong protocol. Upon starting the view, they collect all transactions
received by the start of the view and not yet appended to their log. The ‘value’
they broadcast is a signed list of these transactions, indexed by the view.

With this approach, processors reach consensus on the result of each view: either all
correct processors agree on a new block of transactions proposed by the leader of the
view, or else all correct processors agree that the view does not finalise new transactions.
This meant that it was not necessary for each new leader to specify which previous
block their new proposal should extend: at the start of the view, correct processors have
already reached consensus on this value.

The need for unique ‘pointers’. A downside of this ‘Dolev-Strong for each view’
approach is that it is inefficient, requiring f + 1 rounds of communication in each view.
Going forward, we want to define protocols for which each view requires only a small
constant number of rounds. Moreover, we now need a protocol that functions in the
partially synchronous model, where we have already seen that BB is not possible (see
Section 8.4). In this context, it will be convenient for the leader of each view to be
able to ‘point to’ the previous block of transactions that their new block is supposed to
extend. How can they point to such a block? One method would be to simply include
the previous block inside the new proposed block. However, this would mean blocks
quickly grow in size: sending each new block would now involve sending all previous
blocks.

What we need is a short ‘digest’ of the previous block that can be used as a pointer. To
act correctly as a pointer, this short digest must be unique (or ‘collision-free’). This is
the functionality provided by collision-free hash functions.

Collision-free hash functions. For our purposes, a hash function is just a function
that maps binary strings of arbitrary length to binary strings of some fixed length λ,
where λ is a tuneable parameter. Since there are only a finite number of binary strings
of a given length λ, the function cannot actually be injective, i.e., there must exist
distinct strings which are mapped to the same value. However, this does not necessarily
mean that finding such collisions is a computationally easy task. Roughly, when we
say that a hash function is collision-resistant, this means that finding collisions is not a
computationally feasible task. For example, SHA256 is a well-known hash function that
maps any string to a 256 bit output, and for which no collision has been found to date.

In this book, we’ll black box the cryptography behind hash functions and, for practical
simplicity, we’ll just suppose given a hash function H which is ideal in the sense that it is
collision-free, i.e., we suppose H is injective. Formally, this means we restrict attention
to executions in which the hash values of all ‘relevant’ messages are unique.1

Building blockchains. As hinted at above, one basic use of the hash function H will
be in allowing each new ‘block’ of transactions to ‘point to’ a previous block. To achieve
this, we begin with a genesis block, which is known to all processors at the start of the
protocol execution, and which does not point to any previous block. Any block b other
than the genesis block is required to point to some previous block to be valid : b points to
previous block b′ (such as the genesis block) simply by including H(b′) in some specified

1The ‘relevant’ messages will be protocol specific. For Tendermint, the relevant messages will be all
blocks received by at least one processor.

57

place amongst its data. In this case, we say b′ is the (unique) parent of b, and that b is
a child of b′. We also talk in terms of ancestors and descendants. The genesis block has
only itself as an ancestor. The ancestors of any other block b with parent b′ are b and
all ancestors of b′: the genesis block is required to be amongst the ancestors of b for it to
be a valid block. In this way, the ancestors of any block b form a ‘blockchain’ - a finite
chain of blocks each pointing to its predecessor. Two blocks are incompatible if neither
is an ancestor of the other. The descendants of any block b are b and all descendants of
the children of b.

9.1.2 Quorum intersection arguments

The use of quorum intersection arguments, which we already saw when discussing the
Phase-King protocol in Section 6.2, will be our ‘bread and butter’ when building pro-
tocols from this point on. Essentially, quorum intersection arguments are just simple
counting arguments showing that, when the number of faulty processors is sufficiently
bounded, voting procedures cannot result in multiple voting options receiving large ma-
jorities.

To make this concrete, let us consider the use of quorum intersection arguments in
the case of Tendermint. Just like the previous approach that used repeated instances
of Dolev-Strong, the Tendermint protocol divides the instructions into views, with each
view having a leader. In each view, the leader will propose some new block of transactions
b, and (if b is appropriately formed) other processors will then send out votes for b. If
the leader is Byzantine and sends different blocks to different processors, then correct
processors may vote for different blocks, but each correct processor will be instructed
to vote for at most one block in each view. In this case, a simple counting argument
shows that (assuming f < n/3) at most one block can receive votes from at least n− f
processors in each view. The argument is the same as that we used to establish ‘Time-
slot 1 Agreement’ for the Phase-King protocol. Towards a contradiction, we suppose
two distinct blocks b and b′ both receive votes from n− f processors:

• Let P be the set of processors that vote for b, so |P | ≥ n− f ;

• Let P ′ be the set of processors that vote for b′, so |P ′| ≥ n− f ;

• The intersection |P ∩ P ′| ≥ |P |+ |P ′| − n ≥ (n− f) + (n− f)− n = n− 2f ;

• Since f < n/3, we have n− 2f > f ;

• Therefore |P ∩ P ′| > f , meaning P ∩ P ′ contains at least f + 1 processors;

• Since at most f processors are faulty, P ∩P ′ contains at least one correct processor;

• This correct processor votes for both b and b′, contradicting the fact that correct
processors vote for at most one block in each view.

We’ll call a set of votes for b by n − f processors a quorum certificate (QC) for b. So,
the argument above shows that at most one block for each view can receive a QC.

The reason that SMR (and BA) are possible in the partially synchronous model if and
only if f < n/3 is because it is precisely in this regime that the quorum intersection

58

argument above is valid. In fact, we’ll see in Chapter 15 that protocols using randomness
in the asynchronous model can also solve SMR (and BA) if and only if f < n/3, and
this is true for the same reason.

Having established the essential tools of hash-based blockchain construction and quorum
intersection arguments, we can now describe how these techniques combine to create an
efficient SMR protocol.

9.2 Tendermint with synchronised clocks

To explain the protocol, we first informally describe an overly simple approach that does
not work.

9.2.1 A simple (but failed) attempt

As described previously, the instructions will be divided into views, with each view
having a designated leader. The leader for view v will be processor pi, where i = v mod n,
and blocks will be ordered by corresponding view number. One simple approach would
be to consider blocks finalised upon receiving at least n − f votes for them, i.e., upon
receiving a QC for the block, and to proceed as follows within each view:

1. Each view is of length 2∆. When the view begins (at time-slot t = 2v∆), the
leader produces and sends a new block of transactions to all processors. This
block includes the view number and should extend the greatest finalised block
amongst those they have seen.

2. At time-slot t + ∆, processors each consider the first block (if any) they have
received from the leader. If it extends the greatest finalised block they have seen,
then they produce a signed vote for that block and send that vote to all processors.

This approach is certainly simple. In the partially synchronous model, however, it is
especially easy to see that such a protocol will not satisfy Consistency, i.e., incompatible
blocks might become finalised. For example, a block b might receive votes from at least
n− f processors while in view v, without any correct processors actually seeing the QC
by the end of the view. This might happen simply because the view takes place before
GST (recall that GST is unknown), which allows for the possibility that the votes are
sent but not received by some (or all) correct processors until after GST. Then a block
which is incompatible with b might be proposed in view v + 1 and might also become
finalised.

9.2.2 Using two stages of voting (informal analysis)

What happens if we consider two stages of voting in each view instead? Let us suppose
that, if they see a QC for b produced in a first round of voting, a QC of ‘stage 1’ votes
say, processors then produce a ‘stage 2’ vote. A QC of stage 2 votes is now required
for finalisation. The problem with the protocol from Section 9.2.1 was that a block

59

might be finalised without correct processors actually seeing the QC. With our new
approach, it is at least the case that, if the view v block b is finalised, then all correct
processors producing stage 2 votes for b have seen the stage 1 QC. Suppose we now
instruct processors who have seen the stage 1 QC for b to lock on b: p being locked on b
does not yet mean that p has finalised b, but means that (so long as the lock is in place)
p will not vote for subsequent proposals that are incompatible with b. It is not hard to
see that this new rule produces Consistency:

• If b receives a stage 1 QC in view v then, by our previous quorum intersection
analysis in Section 9.1.2, no other block can receive a stage 1 QC in view v. This
means no other block can receive a stage 2 QC in view v, since no correct processor
produces a stage 2 vote for any block without first seeing a stage 1 QC for that
block.

• If b is finalised in view v, at least n− f processors produce stage 2 votes for b, and
so become locked on b if correct.

• Since at least n−f processors are required to produce any stage 1 QC, this makes
it impossible for any block b′ incompatible with b to receive a stage 1 QC (or a
stage 2 QC) in subsequent views:

- By the same argument as in our previous quorum intersection analysis in
Section 9.1.2, any set of n − f processors producing stage 2 votes for b and
any set of n− f processors producing stage 1 votes for b′ must have a correct
processor p in the intersection.

- This gives a contradiction, since p being locked on b means that it would not
produce the stage 1 vote for b′.

In a bit more detail, we now proceed as follows. First, a small technical convenience:
the genesis block is treated as a special case, in the sense that the empty set of votes
is considered a stage 1 QC for the genesis block. This means that all processors begin
the execution having received a stage 1 QC for the genesis block. The genesis block is
considered a block for view 0. If Q is a stage 1 or 2 QC for b, then Q.view is the view
corresponding to b. Like blocks, stage 1 QCs are ordered by view. Each processor now
maintains a local variable lock, which is always a stage 1 QC for some block, and is
initially set to be the empty set, i.e., a stage 1 QC for the genesis block. Blocks are
finalised upon receiving a stage 2 QC. Views are now of length 3∆. In each view v > 0,
we proceed as follows:

1. When the view v > 0 begins (at time-slot t = 3v∆), the leader finds Q which is the
greatest stage 1 QC it has received. Suppose Q is a stage 1 QC for b′. The leader
then produces a new proposal with parent b′ and sends this to all processors. The
proposal includes Q.

2. At time-slot t+∆, processors only vote for the first proposal b received from the
leader if it includes Q which is a stage 1 QC for the parent b′, and if Q.view ≥
lock.view.

3. At time-slot t+2∆, processors look to see if they have received Q′ which is a stage
1 QC for some block b for view v. If so, they:

60

- Set lock := Q′ (reset the lock).

- Send Q′ and a stage 2 vote for b to all processors.

How about Liveness? We have seen above that it will be easy to argue that Ten-
dermint satisfies Consistency. In fact, proving Liveness is also straightforward. The
main task in establishing Liveness is to show that every view v that has a correct leader
and begins after GST+∆ finalises a new block. This follows just because, when any
correct processor has set its local value lock := Q′ during a previous view v′, it has
sent Q′ to all processors. This must have happened at least ∆ time-slots before the
start of view v. The leader will therefore have received this stage 1 QC, and will select
a parent corresponding to a view greater than or equal to any correct processor’s local
value lock.view. All correct processors will therefore produce stage 1 votes, and then
stage 2 votes for the leader’s proposal during view v, and the proposal will therefore be
finalised.

That’s really all there is to the Tendermint protocol. However, the discussion above was
somewhat informal. In the next section, we give a formal specification.

9.2.3 The formal specification

In what follows, we suppose that, when a correct processor sends a message to ‘all
processors’, it regards that message as immediately received by itself. For the sake of
simplicity, we also assume (without explicit mention in the pseudocode) that correct
processors automatically send new transactions to all others upon first receiving them
- we will revisit this assumption in Section 9.5. We write ∅ to denote the empty set or
empty sequence, and we let ⊥ be some default distinguished value. The pseudocode uses
a number of message types, local variables, functions and procedures, detailed below.

The function lead(v). The value lead(v) specifies the leader for view v. To be
concrete, we set lead(v) := pi, where i = v mod n.

Blocks. A block b is a message specified by four values:

• b.view: this is a value in N≥0 that specifies the view corresponding to b;

• b.Tr: a sequence of transactions in T ;2

• b.par: either ⊥, or a hash value specifying the parent of b;

• b.QC: a stage 1 QC for b.par if b.par ̸= ⊥.

A correct processor only regards a message as a block if it is of the form above. If
b.view = v, we also refer to b as a ‘view v block’. The genesis block is denoted bg and
satisfies bg.view = 0, bg.Tr = ∅, bg.par = ⊥, bg.QC = ⊥. We regard bg as received by all
correct processors at time-slot 0. Blocks are ordered by b.view and then by least hash.

The sequence of transactions specified by the ancestors of a block. Each block b
specifies an extended sequence of transactions, denoted b.Tr∗, as follows: we concatenate
the values b′.Tr for all ancestors b′ of b, removing any duplicate transactions.

2Recall that T is the set of possible transactions.

61

Votes. For d ∈ {1, 2}, a stage d vote is a message of the form V = (vote, v, d, τ) signed
by some processor in Π, where v ∈ N≥0 specifies the view corresponding to V and τ is
a finite binary string. If b is a block, v = b.view, and τ = H(b), we say V is a stage d
vote for b.

Stage 1 and 2 QCs. For d ∈ {1, 2}, a stage d QC is a set Q of n− f votes, each of the
form V = (vote, v, d, τ) for the same values of v and τ , and each signed by a different
processor in Π. We set Q.view = v, Q.block = τ . Stage 1 QCs are ordered by view and
then by least hash. We also say Q is a stage d QC for τ , and if b is a block, v = b.view,
and τ = H(b), we say Q is a stage d QC for b. We stipulate that ∅ is a stage 1 QC and
a stage 2 QC for bg, and set ∅.view = 0.

The lock. Each processor maintains a local variable lock, initially set to lock = ∅.

Valid proposals. At time-slot t, pi regards a block b as a valid proposal for view v if all
of the following conditions are satisfied: (i) b.view = v; (ii) b.par ̸= ⊥; (iii) Q := b.QC is
a stage 1 QC for b.par, and; (iv) Q.view ≥ lock.view.

The procedure MakeProposal. This procedure is executed by the leader p of view v
to determine a new block. To execute the procedure, p:

1. Lets Q be the greatest stage 1 QC it has received.

2. Forms a sequence of distinct transactions T , containing all transactions received
but not finalised by p;

3. Sets b.view := v, b.Tr := T , b.par := Q.block and b.QC = Q.

4. Sends b to all processors.

Finalising blocks and transactions. Processor p regards b as finalised upon receiving
a stage 2 QC for b. However, the transactions in b.Tr cannot be finalised until p has
received all ancestors of b. Formally, we define F (as required for SMR in Section 7.3)
as follows. For any set of messages M , let b be the greatest block such that M ∪ {bg}
contains: (i) a stage 2 QC for b, and (ii) all ancestors of b. Set F(M) := b.Tr∗.

The instructions are as follows:

Tendermint for synchronised clocks: the instructions for pi.
At time-slot 3v∆ for v ∈ N>0:
If pi = lead(v):
MakeProposal; ▷ Propose a new block if leader

At time-slot 3v∆+∆ for v ∈ N>0:
If pi has received exactly one valid proposal b for view v from lead(v):
Send b and a signed stage 1 vote for b to all processors; ▷ stage 1 vote

At time-slot 3v∆+ 2∆ for v ∈ N>0:
If pi has received exactly one valid proposal b for view v and Q which is a
stage 1 QC for b:
Set lock := Q;
Send Q and a signed stage 2 vote for b to all processors; ▷ stage 2 vote

62

While the protocol described above is quite efficient, there are a number of ways it can
be optimised. We will discuss some of these in Section 9.5.

Having specified the protocol, we next verify that it satisfies Consistency and Liveness.
The proofs are essentially just those outlined in Section 9.2.2.

9.2.4 Verifying Consistency and Liveness

Throughout this section, we consider the partially synchronous model with synchronised
clocks, signatures and Byzantine faults, and we suppose that f < n/3. First, we verify
that the protocol satisfies Consistency.

Lemma 9.1 (Consistency). The Tendermint protocol for synchronised clocks satisfies
Consistency.

Proof. For d ∈ {1, 2}, let us say that block b ‘receives a stage d QC’ if b = bg or there
exist at least n−f processors that each send a stage d vote for b to at least one processor.
Any block b that receives a stage 2 QC must also receive a stage 1 QC, since no correct
processor sends a stage 2 vote for b before receiving a stage 1 QC for b.

To argue that the protocol satisfies Consistency, it suffices to show that no two incom-
patible blocks can receive stage 2 QCs. Towards a contradiction, suppose that there
exists a least v such that:

• Some b with b.view = v receives stage 1 and 2 QCs, Q1 and Q2 say.

• For some least v′ ≥ v, there exists b′ such that b′ is incompatible with b, with
b′.view = v′ and b′.QC = Q0 (say), and the block b′ receives a stage 1 QC, Q3 say.

If v = v′ then, by the quorum intersection argument of Section 9.1.2, some correct
processor must have sent votes in both Q1 and Q3. This gives a contradiction since
correct processors send at most one stage 1 vote in each view.

So, suppose v′ > v. Then, by the same quorum intersection argument, some correct
processor p must have sent votes in both Q2 and Q3. This gives the required contra-
diction, since p must set its local value lock to be a stage 1 QC for b while in view v.
However, our choice of (v, v′) and the fact that b′ is incompatible with b means that
Q0.view < v, so that p would not regard the proposal b′ as valid while in view v′ and
would not produce a vote in Q3.

To prove Liveness, we first prove the following lemma.

Lemma 9.2 (Correct leaders finalise new blocks). If view v > 0 begins at least ∆ time-
slots after GST (i.e., 3v∆ ≥ GST + ∆) and p = lead(v) is correct, then p proposes a
view v block b and all correct processors receive a stage 2 QC for b by the end of view v.

Proof. The proof proceeds just as sketched in Section 9.2.2. For each pi ∈ Π, let locki
denote the local variable lock as defined for pi. Suppose the conditions in the statement
of the lemma hold and let t = 3v∆. Suppose pi is correct and let Q′ = locki as defined
at t. Note that locki is only redefined when pi sends a stage 2 vote in some view,

63

meaning that pi most recently set this value at t′ ≤ t−∆ (possibly t′ = 0). Upon doing
so, pi sends Q

′ to all processors (or, if t′ = 0, then all processors have already received
Q′). Since t−∆ ≥ GST, p = lead(v) receives this stage 1 QC by t. From the definition
of the procedure MakeProposal, it follows that p proposes a view v block b such that,
for Q = b.QC, Q.view ≥ Q′.view. Since our choice of pi was arbitrary amongst correct
processors, and because no correct processor resets its lock in the interval (t−∆, t+∆],
it follows that all correct processors will regard b as a valid proposal for view v at t+∆.
All correct processors will therefore send a stage 1 vote for b to all processors at this
time-slot. All correct processors will then receive a stage 1 QC for b by t+2∆, and will
send a stage 2 vote for b to all processors at this time-slot. All correct processors then
receive a stage 2 QC for b by t+ 3∆.

Next, we prove that correct processors eventually receive all ancestors of any block
finalised by a correct processor.

Lemma 9.3 (Processors receive necessary blocks). Suppose p is correct and finalises b.
Then all correct processors eventually receive all ancestors of b.

Proof. The height h of a block is its number of ancestors. First, we prove by induction
on height that if b receives a stage 1 QC, then all ancestors of b receive stage 1 QCs. The
statement is vacuously true for the genesis block (height 1). So, suppose the claim holds
for h ≥ 1. No correct processor sends a stage 1 vote for any block b of height h+1 before
seeing a stage 1 QC for its parent, i.e., this condition is required for b to be considered
a valid proposal for the view. It therefore follows from the induction hypothesis that, if
b receives a stage 1 QC, all ancestors of b receive stage 1 QCs.

Now suppose that p is correct and finalises b (of any height). If b = bg then the claim
of the lemma holds, since all correct processors receive bg at time-slot 0. If b ̸= bg, then
we have established that all ancestors of b receive stage 1 QCs. All correct processors
that send stage 1 votes for any ancestor also send that ancestor to all processors. So,
all correct processors receive all ancestors of b, as required.

Finally, we establish Liveness.

Lemma 9.4 (Liveness). The Tendermint protocol for synchronised clocks satisfies Live-
ness.

Proof. Suppose correct pi receives the transaction tr at t0. We specified in Section 9.2.3
that pi sends tr to all processors upon receiving it. So, all correct processors receive tr by
t1 = max{t0,GST}+∆. Let v be a view that begins at t2 ≥ t1, and with correct leader
p. By Lemma 9.2, p proposes a block b that is finalised by all correct processors by the
end of view v. By Consistency, and by the definition of the procedure MakeProposal,
tr ∈ b′.Tr for some ancestor b′ of b, i.e., tr ∈ b.Tr∗. By Lemma 9.3, all correct processors
receive all ancestors of b. So, tr is finalised by all correct processors.

Hopefully, the Tendermint protocol we presented in this section seems quite simple.
Next, we present a ‘pipelined’ version of the protocol, which has an even simpler protocol
specification.

64

9.3 Pipelined Tendermint

The basic idea behind Pipelined Tendermint is that we can actually use a single round
of voting in each view, so long as finalisation for b requires receiving a stage 1 QC and
then a child b′ of b also receiving a stage 1 QC in the next view. In this case, the round
of voting on b′ can be seen as playing the same role as the second round of voting on
b in the previous section. Proceeding this way, the proof of Consistency will be almost
unchanged. The only major change to the proof of Liveness is that we now require correct
leaders in two consecutive views after GST to guarantee finalisation of a new block. To
accommodate this, we could have each leader be responsible for two consecutive views.
However, the assumption that f < n/3 already guarantees consecutive views with correct
leaders.

All definitions, besides F and when processor finalise blocks, remain the same as in
Section 9.2.3. When we refer to a ‘QC’ in what follows, we mean a stage 1 QC. When
we refer to a ‘vote’, we mean a ‘stage 1 vote’.

Processors now finalise b upon receiving a QC for b and a QC for a child b′ of b with
b′.view = b.view + 1. For any set of messages M , let b be the greatest block b such that
either b = bg or M ∪ {bg} contains: (i) a QC for b; (ii) a QC for a child b′ of b with
b′.view = b.view + 1, and; (iii) all ancestors of b. Set F(M) := b.Tr∗.

The protocol instructions are as follows.

Pipelined Tendermint: the instructions for pi.
At time-slot 2v∆ for v ∈ N>0:
If pi = lead(v):
MakeProposal; ▷ Propose a new block if leader

At time-slot 2v∆+∆ for v ∈ N>0:
If pi has received exactly one valid proposal b for view v from lead(v):
Set lock := b.QC and send this value to all processors; ▷ set lock
Send b and a signed vote for b to all processors; ▷ vote

Next, we prove consistency and liveness. The proofs are simple adaptations of those
from Section 9.2.4.

9.3.1 Verifying Pipelined Tendermint

As in Section 9.2.4, we consider the partially synchronous model with synchronised
clocks, signatures and Byzantine faults, and we suppose f < n/3. First, we verify that
the protocol satisfies Consistency.

Lemma 9.5 (Consistency). Pipelined Tendermint satisfies Consistency.

Proof. Let us say that block b ‘receives a QC’ if b = bg or there exist at least n − f
processors that each send a vote for b to at least one processor. Towards a contradiction,
suppose that there exists a least v such that:

65

• Some b1 with b1.view = v receives a QC, Q1 say, and some child b2 of b1 with
b2.view = b1.view + 1 also receives a QC, Q2 say.

• For some least v′ ≥ v, there exists b3 such that b3 is incompatible with b1, b3.view =
v′ and b3 receives a QC, Q3 say. Let Q0 = b3.QC.

If v = v′ then, by the quorum intersection argument of Section 9.1.2, some correct
processor must have sent votes in both Q1 and Q3. This gives a contradiction since
correct processors send at most one vote in each view. We reach the same contradiction
if v + 1 = v′, by considering the processors that send votes in both Q2 and Q3.

So, suppose v′ > v+1. Then, by the same quorum intersection argument, some correct
processor p must have sent votes in both Q2 and Q3. This gives the required contra-
diction, since p must set its local value lock to be a QC for b1 while in view v + 1.
However, our choice of (v, v′) and the fact that b3 is incompatible with b1 means that
Q0.view < v, so that p would not regard the proposal b3 as valid while in view v′ and
would not produce a vote in Q3.

To prove Liveness, we need simple adaptions of Lemmas 9.2-9.4. The proofs of the
first two of these lemmas only require trivial modifications and are left as an exercise
(Exercise 9.1).

Lemma 9.6 (Liveness). Pipelined Tendermint satisfies Liveness.

Proof. The proof is almost the same as the proof of Lemma 9.4. Suppose correct pi
receives the transaction tr at t0. We specified in Section 9.2.3 that pi sends tr to all
processors upon receiving it. So, all correct processors receive tr by t1 = max{t0,GST}+
∆. Let v be a view that begins at t2 ≥ t1, and such that the leaders of views v and
v + 1 are both correct: such a view exists because f < n/3. Let these leaders be p and
p′, respectively. Then, by almost exactly the same proof as for Lemma 9.2, p proposes
a block b, and all correct processors receive a QC for b by the end of view v. Similarly,
the next leader p′ then proposes a child b′ of b, and all correct processors receive a QC
for b′ by the end of view v + 1. So, b is finalised by all correct processors by the end
of view v + 1. By Consistency, and by the definition of the procedure MakeProposal,
tr ∈ b′′.Tr for some ancestor b′′ of b, i.e., tr ∈ b.Tr∗. By almost exactly the same proof
as for Lemma 9.3, all correct processors receive all ancestors of any block that receives
a QC. So, tr is finalised by all correct processors.

So far, in this section and in Section 9.2, we have considered protocols for the partially
synchronous model with synchronised clocks. In the next section, we consider how to
adapt these protocols for the version without synchronised clocks.

9.4 Tendermint without synchronised clocks

In this section, we’ll consider how to adapt the protocol of Section 9.2 to the partially
synchronous model without synchronised clocks. Similar modifications can also be ap-
plied to Pipelined Tendermint.

66

9.4.1 The intuition

When we move to the partially synchronous model without synchronised clocks, some
mechanism is required to synchronise processors on the same view. Roughly, the stan-
dard approach works as follows:

- Processors no longer move into views at pre-specified times. A processor now
moves into view v from a lower view upon receiving an appropriate certificate
that gives them permission to do so. These certificates are formed and shared as
specified in the bullet points below.

- Upon entering view v, each processor sets a local timer to expire in some fixed
amount of time. Once the timer expires they send a ‘time-out’ message for view v
to all other processors.

- Processors enter view v+1 if they are presently in a lower view and if they receive
Q which is either a stage 2 QC corresponding to view v, or else a set of n−f time-
out messages for view v, each signed by a different processor. We call a collection
of messages of the latter sort a time-out certificate (TC) for view v. Upon receiving
Q and entering view v + 1, the processor sends Q to all other processors.

Why does this work? First, note that none of these changes impact Consistency.
Correct processors still only send at most one stage 1 vote and at most one stage 2 vote
in each view, and still implement the same locking mechanism. This means the proof of
Consistency goes through unchanged.

To prove Liveness, there are two new considerations:

1. For each v ≥ 1, we now need to prove that there is some first time-slot, tv say, at
which a correct processor enters view v. Also, tv′ > tv if v′ > v.

2. We need to check that, after GST, correct leaders still produce new finalised blocks.

Proving (1) is straightforward. It follows immediately that no correct processor can enter
view v + 1 before any correct processor has entered view v, because entering view v + 1
requires either a stage 2 QC or a TC for view v, to which some correct processors must
contribute. To show that each tv is defined, the crucial point is that, upon entering any
view, a correct processor sends the relevant certificate to all others. So, if any correct
processor enters infinitely many views, they all do. If there were some greatest view v
entered by any correct processor p, then all correct processors eventually enter view v.
Then all correct processors send time-out messages for view v, and so receive a TC for
view v.

The proof for (2) is close to that for Lemma 9.2, with the following caveat. Suppose p
is the first correct processor to enter view v and does so at tv ≥ GST. Since p sends the
certificate allowing it to enter the view to all others, all correct processors enter view
v by tv +∆. However, the fact that they now only enter the view within ∆ time-slots
of each other (rather than exactly together, as in Section 9.2) means that leaders now
have to wait 2∆ time-slots after entering the view before producing their block. This is
required to ensure they have sufficient time to receive the locks of correct processors: if

67

the leader is correct and is the first to enter the view, then other correct processors will
enter by tv +∆ and the leader will receive all necessary locks by tv + 2∆.

In the next section, we describe the formal specification.

9.4.2 The formal specification

The formal definitions used to specify the protocol remain unchanged from Section 9.2.3,
but we also make the definitions below.

The local variable v: this is a local variable, which p uses to record the present view.
Initially, v = 1.

The local variables 1voted and 2voted: these record whether pi has already sent
stage 1 and stage 2 votes in the present view, and are initially set to 0.

Time-out messages and TCs: a time-out message for view v is a message of the form
(time-out, v), signed by some processor in Π. A set of n− f messages of this form, each
signed by a different processor, is called a time-out certificate (TC) for view v.

The timer. Each processor p has a local timer, denoted Timer, which it can set to 0 at
any time, and which then automatically increments at each time-slot at which p is active.
This means that the timer increments in ‘real time’ after GST. Initially, Timer = 0.

The protocol instructions are as follows. We’ll refer to the version of Tendermint for
partial synchrony (without synchronised clocks) simply as ‘Tendermint’.

Tendermint: the instructions for pi.
At time-slot 0:
Set v := 1, 1voted := 0, 2voted := 0, Timer := 0, lock = ∅; ▷ initialise

At every time-slot t:

If pi = lead(v) and Timer = 2∆:
MakeProposal; ▷ Propose a new block if leader

If pi has received exactly one valid proposal b for view v from lead(v) and
1voted = 0:
Send b and a signed stage 1 vote for b to all processors; ▷ stage 1 vote
Set 1voted := 1;

If pi has received exactly one valid proposal b for view v and Q which is a
stage 1 QC for b and if 1voted = 1 and 2voted = 0:
Set lock := Q;
Send Q and a signed stage 2 vote for b to all processors; ▷ stage 2 vote
Set 2voted := 1;

If pi has received Q which is a stage 2 QC with Q.view = v′ ≥ v or which is a
TC for view v′ ≥ v:
Send Q to all processors;
Set v := v′ + 1, 1voted := 0, 2voted := 0, Timer := 0; ▷ enter higher view

If Timer = 5∆:
Send a time-out message for view v to all processors ▷ send time-out

68

Why 5∆ for time-out? Here, we give an informal analysis: a more formal analysis
appears in the proof of Lemma 9.8 in the next section. As already explained, leaders
must wait 2∆ before forming their proposal. This means that if lead(v) is correct, and
if the first correct processor p to enter view v does so at t ≥ GST, then lead(v) will
enter the view by t + ∆. Then lead(v) will send out a block b by t + 3∆. All correct
processors will send stage 1 votes for b by t+4∆, and will send stage 2 votes by t+5∆.
It is therefore safe to send time-out messages at t+ 5∆, i.e., doing so cannot cause any
correct processor to receive a TC for view v before sending their stage 2 vote.

In the next section, we show that Tendermint satisfies (Consistency and) Liveness.

9.4.3 Verifying Consistency and Liveness

Throughout this section, we consider the partially synchronous model (without synchro-
nised clocks), signatures and Byzantine faults, and we suppose that f < n/3. The proof
of Consistency is exactly the same as for Lemma 9.1, so we focus on Liveness.

We begin by establishing that correct processors progress through the views.

Lemma 9.7. For each v ≥ 1, there is some first time-slot, tv say, at which a correct
processor enters view v. Also, tv′ > tv if v′ > v.

Proof. The proof given in Section 9.4.1 works exactly as stated.

Next, we establish the equivalent of Lemma 9.2.

Lemma 9.8 (Correct leaders finalise new blocks). For each v ≥ 1, let tv be as defined
in the statement of Lemma 9.7. If tv ≥ GST and p = lead(v) is correct, then p proposes
a view v block b and all correct processors receive a stage 2 QC for b.

Proof. The proof is very similar to the proof of Lemma 9.2, but we must be careful
about the precise timing. For each pi ∈ Π, let locki denote the local variable lock as
defined for pi.

Suppose the conditions in the statement of the lemma hold. Towards a contradiction,
suppose it is not the case that p proposes a view v block b and all correct processors
receive a stage 2 QC for b by tv + 6∆. If any correct processor received such a 2 QC by
tv+5∆ it would send it to all other processors, which gives an immediate contradiction.
No correct processor sends a time-out message for view v before tv+5∆, so no processor
can receive a TC for view v before this time. Since the first correct processor to enter
view v sends the corresponding certificate (a stage 2 QC or TC for view v − 1) to all
processors at tv, it follows that all correct processors are in view v for the entirety of
the interval [tv +∆, tv + 5∆]. This holds because no correct processor can leave view v
without receiving either a stage 2 QC or TC for a view ≥ v, neither of which can happen
before tv + 5∆.

Suppose pi is correct. Note that, before entering view v, pi most recently set locki to
some value Q′ at some t′ ≤ tv +∆ (possibly t′ = 0). Upon doing so, pi sends Q

′ to all
processors (or, if t′ = 0, then all processors have already received Q′). It follows that
p receives Q′ by tv + 2∆, before it produces and sends a block. Note that pi does not

69

redefine locki while in view v before sending a stage 1 vote: this is because locki is
only set when sending a stage 2 vote, which requires having already sent a stage 1 vote.
From the definition of the procedure MakeProposal, it follows that p proposes a view v
block b by tv + 3∆ such that, for Q = b.QC, Q.view ≥ Q′.view. Since our choice of pi
was arbitrary amongst correct processors, all correct processors send stage 1 votes for b
by tv + 4∆. All correct processors will then receive a stage 1 QC for b by tv + 5∆, and
will send a stage 2 vote for b to all processors by this time-slot. All correct processors
then receive a stage 2 QC for b by tv + 6∆, giving the required contradiction.

Given Lemmas 9.7 and 9.8, the statements of Lemmas 9.3 and 9.4 can then be shown to
hold for Tendermint, with essentially identical proofs to those from Section 9.2.4. This
establishes Liveness for Tendermint.

In the next section, we consider various optimisations of Tendermint.

9.5 Tendermint: further analysis

9.5.1 A design principle

Of course, a big advantage of Tendermint over the ‘proof-of-principle’ protocol described
in Sections 7.2 and 7.4 is that Tendermint solves SMR for the partially synchronous
model. However, even in synchrony, Tendermint is much more efficient when leaders act
correctly: while f faulty leaders in a row can cause a delay O(f∆) between views that
finalise new blocks, each correct leader finalises a new block in a small constant number
of rounds of communication. The protocol of Sections 7.2 and 7.4 was impractical for
large f because each view required f + 1 rounds of communication.

The considerations above speak to an important design principle for SMR protocols.
While we are certainly interested in performance when a large number of processors
are faulty, and while we certainly want to maintain Consistency when message delivery
is unreliable, experience with real-world systems shows that most of the time message
delivery is reliable and most processors act correctly. While we want strong Consis-
tency guarantees when conditions are not favourable, this means that, when it comes
to efficiency considerations, we are most interested in the ‘common case’ that message
delivery is reliable and at most a few processors are faulty. Overall, the point is that
Tendermint has two strong advantages over the protocol of Sections 7.2 and 7.4:

1. It solves SMR in partial synchrony;

2. A small constant number of rounds of communication are required to finalise each
new block in the ‘common case’ that message delivery is reliable and leaders act
correctly.

In Section 9.3, we already considered how ‘pipelining’ can be applied to Tendermint. In
the remainder of this chapter, we give a number of forward pointers to other ways in
which Tendermint and other similar protocols can be optimised. We’ll formalise these
optimisations in later chapters of the book.

70

9.5.2 Quick block proposals in the good case

[Andy: Add subsection on how leaders can immediately propose a block upon receiving
a QC for the previous view. Forward pointer to the notion of optimistic responsiveness:
we’ll define two versions in Chapter ??.]

9.5.3 Block echoing

In all of the protocols described in this chapter, we required processors to send the
block b to all others whenever they send a stage 1 vote for b. This ‘echoing’ of received
blocks was used to ensure that all correct processors receive any block finalised by a
correct processor (required for SMR). In real-world scenarios, however, this process
of echoing blocks may be expensive: blocks are often much larger objects than other
protocol messages, such as votes. If all processors send b to all other processors, this
will consume valuable network bandwidth.

A common approach is therefore not to require processors to echo received blocks, and
to exploit the fact that receiving a stage 1 QC suffices to ensure data-availability : if
b receives a stage 1 QC then at least n − f processors (including many correct ones)
must have received and voted for it. Correct processors can therefore use a (potentially
rate-limited) “pull” mechanism to retrieve any missing finalised blocks from peers who
possess them. This approach involves a trade-off: while it saves on communication costs
when processors act correctly, extra time may be required to retrieve necessary blocks
in the case that Byzantine leaders initially withhold those blocks from some processors.
These ideas will be explored in further detail in Chapter 13, where we define the notion
of Extractable SMR.

An alternative approach is to have leaders broadcast blocks using erasure coding tech-
niques. This method will be explained in Chapter 16.

9.5.4 The Mempool

Another simplification we made in this chapter was to assume that processors automat-
ically forward all newly received transactions to all other processors. This simplification
allowed us to focus on the consensus mechanism without worrying about transaction
availability. Similar to the considerations in Section 9.5.3, however, in real-world sce-
narios such all-to-all transaction echoing may be expensive. This means that different
methods are often applied in practice. A standard approach is to use a separate ‘mem-
pool’ protocol for transaction dissemination. For example, each processor might forward
each newly received transaction to some small number of other processors, who then for-
ward on the transaction themselves, and so on. Transactions are thus disseminated via
a ‘gossip network’.

In fact, the standard approach when describing and analysing SMR protocols is to black
box the underlying mempool protocol. The SMR protocol is then required to function
efficiently given that transaction dissemination is handled by the mempool. We will
consider these issues in more detail in the next chapter, where we will also formally
define the task of a ‘mempool’.

71

9.5.5 Threshold signatures

In the versions of Tendermint described in this chapter, we required processors to send
their lock (a stage 1 QC) to all other processors whenever they reset this value. In the
protocol of Section 9.4.2, we also required processors to forward a stage 2 QC or a TC
to all others upon leaving each view. If n is large, these certificates will be large objects.
An approach that can sometimes increase efficiency in this case is to make use of a
cryptographic technique called a threshold signature scheme. Roughly, the functionality
that such a scheme provides is to give a mechanism for condensing any stage 1 QC or
stage 2 QC (or TC) into a message of constant length. Rather than sending the entire
QC (a set of n − f messages), processors can now send the shorter message, saving
on communication costs. In Chapter 12, we will see how to formally model the use of
threshold signatures within our framework.

9.5.6 Random leaders

[Andy: Add subsection on random leaders, to give constant expected latency (we have
not yet formally defined latency for SMR, but can talk informally). Add forward pointer
to Chapter 12.]

Although we have talked informally about ‘efficiency’ for SMR protocols in this section,
we do not yet have any formal metrics by which to compare SMR protocols. In the
next chapter, we define notions of message complexity, communication complexity and
latency for SMR protocols.

9.6 Exercises

Exercise 9.1. [Andy: Exercise completing liveness proof for pipelined version.]

Exercise 9.2. [Andy: Exercise showing how one can use threshold signatures and com-
munication via the leader to make communication complexity linear within each view
modulo view synchronisation.]

Chapter 10

SMR metrics

For BA and BB, we have already considered some metrics that allow one to formally
calibrate protocol efficiency. One natural metric, considered in Chapter 5, is the time
before correct processors output. Another, considered in the same chapter, is the num-
ber of messages sent by correct processors. A refinement of the latter metric, already
briefly discussed in Section 5.3, considers the number of bits sent by correct processors.
However, the fact that SMR is a ‘multi-shot’ protocol, i.e., there is no time-slot at which
correct processors terminate and give some final output, means that there are a number
of ways in which we can form similar notions for SMR.

In Section 10.1 of this chapter, we begin by defining some natural complexity notions for
SMR protocols, which are analogues of the metrics above. Since SMR protocols are often
defined and analysed assuming that some (separate and black boxed) ‘mempool’ protocol
is responsible for transaction propagation, in Section 10.2 we then formally define the
‘Mempool’ task. In Section 10.3, we describe how to modify the notions of Section 10.1
so that they correctly apply to SMR protocols using a black boxed mempool. In Section
10.4, we analyse how Tendermint fares according to the metrics we have defined.

10.1 Complexity metrics for SMR

We begin by defining latency. Then, in Section 10.1.2, we consider message and com-
munication complexity.

10.1.1 Latency for SMR protocols

For any transaction tr received by a correct processor in an execution, the latency for
tr is the time between when tr is first received by any correct processor and when tr is
first finalised by all correct processors.

The latency of an SMR protocol is the supremum, over all executions1 and all transac-
tions first received by a correct processor after GST, of the latency for that transaction.
(In the synchronous model, we take GST = 0.)

1Of course, when analysing the latency of an SMR protocol, we consider only executions consistent
with the stated assumptions (e.g., at most f Byzantine processors).

72

73

We note that the metric above considers the worst case, in the sense that we consider
the largest possible latency for any transaction. To define the good-case latency, the
definition is the same except that we restrict attention to executions in which all proces-
sors are correct. This terminology is fairly standard, but can lead to confusion since the
latency considered is still the largest possible latency for a transaction first received by
a correct processor after GST in the executions considered: it’s the ‘good case’ latency
only in the sense that processors are now assumed to be correct.

It is also worth noting that, while the definition of good-case latency above is formed so
as not to be protocol specific, for many ‘leader-based’ protocols it accurately captures
latency in the more general case that leaders act correctly.

Next, we consider message and communication complexity, which give rise to some more
nuanced considerations.

10.1.2 Message and communication complexity for SMR protocols

Message complexity. The message complexity of an SMR protocol is the maximum
number of messages sent by correct processors (combined) in any interval of the form
[t1, t2], such that t1 ≥ GST+∆, some transaction tr is first received by a correct processor
at t1, and t2 is the first time-slot at which tr is finalised by all correct processors. Here,
the maximum is taken over all executions, and the message complexity is considered to
be infinite if no such maximum exists.

Why GST+∆? It may initially seem more natural to consider GST, rather than GST+
∆, in the definition above. The latter is used because between GST and GST+∆, correct
processors may receive (and respond to) an unbounded backlog of messages from before
GST. We are generally most interested in the number of messages sent once things have
stabilised after GST.

Communication complexity. The communication complexity uses the same defini-
tion but counts bits rather than messages. We assume transactions have fixed bit-length
(the precise value doesn’t affect asymptotic complexity).

Complications in applying the definition. Applying the definition above often requires
additional assumptions. If the environment sends an unbounded number of transac-
tions whilst tr awaits finalisation, communication complexity (even for many reasonable
protocols) may become unbounded. Meaningful analysis therefore typically requires
bounding block sizes and the transaction arrival rate.

Single transaction complexity. To avoid these complications, we define single trans-
action communication complexity, for which we consider executions where the environ-
ment sends only one transaction tr (to at least one correct processor). The complexity
is the maximum number of bits sent by correct processors between tr’s first receipt by
any correct processor and its finalisation by all correct processors. Single transaction
message complexity counts messages rather than bits.

This definition counts the number of bits/messages sent by the consensus protocol to
achieve finalisation, without the need to count the cost of dealing with large sets of
transactions. Another approach is to distinguish between ‘consensus’ messages and
others. The difficulty with the latter method is that protocols can convey information

74

by repeatedly sending transactions in specific orders, which makes proving lower bounds
complicated.

Since single-transaction message/communication complexity lower bounds the general
message/communication complexity, lower bounds proven for the former immediately
apply to the latter.

Amortised complexity. While the definitions above capture important aspects of
a protocol’s efficiency, alternative metrics are sometimes required to properly reflect
performance. For example, in Chapter 18 we will consider ‘DAG-based’ protocols, in
which many processors propose blocks simultaneously. Accordingly, these protocols have
large single transaction message complexity. However, each new consensus decision also
finalises a large number of new transactions. In this case, the cost per transaction,
also called the amortised complexity, may better reflect performance. We define the
amortised communication complexity to be the supremum over all executions of:

lim supt→∞
total bits sent by correct processors by time t

number of transactions finalised by all correct processors by time t
.

Since GST occurs at some finite time in every infinite execution, the definition above does
not restrict attention to costs after GST. When considering certain finite executions, it
may be useful to make such a restriction.

When is amortised complexity lower? Since the environment may send only a single
transaction in any execution, single transaction communication complexity lower bounds
amortised communication complexity. However, the latter complexity may be lower than
the former when we restrict attention to executions in which the environment sends many
transactions, e.g., when many transactions can be included in each block, reducing the
overall per transaction cost. These ideas will be discussed further in Section 10.1.4.

10.1.3 Lower bounds

In Chapter 5, we showed that deterministic protocols for BA and BB require f+1 rounds
of communication and also require correct processors to send a number of messages that
is quadratic in f . Exercises 10.1 and 10.2 walk you through how to modify these proofs
to give analogous results for SMR: any deterministic SMR protocol has latency at least
(f +1)∆ and single transaction message complexity at least quadratic in f . The proofs
are simple modifications of those in Chapter 5. However, we will see later in this chapter
that a modified proof is required to lower bound message complexity when protocols work
modulo a Mempool protocol.

10.1.4 How to weigh these metrics?

Limitations of existing models. The lock-step, synchronous, partially synchronous
and asynchronous models are the standard models used in Distributed Computing. Com-
mon to all these models is the fact that message sizes are unbounded: for example, in the
synchronous setting, a message of any size sent at time t is guaranteed to be delivered
by t +∆. Of course, part of the motivation for this assumption is to simplify analysis,

75

and consideration of message sizes may not be critical when establishing fundamental
properties of protocols such as Consistency and Liveness. However, a consequence of
their indifference to message sizes is that these models give no meaningful way to anal-
yse some other important properties of a blockchain protocol, such as the maximum
throughput it can handle (we’ll consider throughput formally in Chapter 22).

These models also give limited ability to analyse ‘real-world’ latency. Formally, we can
count the number of rounds of communication required for finalisation. In reality, how-
ever, sending larger amounts of data will generally take longer than sending a smaller
amount. This means we are committed to an awkward dance in which we consider both
the number of rounds of communication required and the message/communication com-
plexity, with no formal way to weigh these metrics. If a protocol uses fewer rounds of
communication but has higher communication complexity than another, what does this
mean in terms of ‘real-world’ latency? Generally (but not always), it is the real-world
latency that one actually cares about, rather than the round complexity or communica-
tion complexity: while potentially of interest in their own right, the latter metrics are
generally used as proxies for the former.

To analyse throughput and to accurately weigh the metrics we have introduced in this
chapter requires a model in which processors have limited bandwidth, i.e., can upload
and download messages at a limited rate. We discuss such a model in Chapter 22.

Care in applying the metrics. The considerations above are important when apply-
ing the metrics defined in this chapter. For example, an approach that is sometimes taken
when analysing amortised communication complexity is to reduce complexity through
the use of batching : if blocks include enough transactions (say Θ(nlog n) or Θ(n2)) then
the cost of the remaining ‘consensus messages’ per transaction can be made small. While
this may be a useful approach in some contexts, one must also consider the impact on
real-world latency. In what settings is it reasonable to suppose that the rate at which
transactions are arriving is super-linear in n? What will be the impact on real-world
latency if we have to wait for transactions to form blocks?

10.2 Defining the Mempool task and MSMR

Since many protocols work modulo a black boxed mempool protocol, in this section we
first define the Mempool task and then consider corresponding complexity metrics.

10.2.1 Defining the Mempool task

As for SMR, we are given as input a transaction set T . The requirement is as follows:
there must exist some known bound ℓ such that, whenever a transaction tr ∈ T is
received (either from the environment or from another processor) by a correct processor
at some time-slot t, all correct processors receive tr by max{t,GST}+ ℓ.

An alternative version of this definition might drop the requirement for the known bound
ℓ, and require simply that tr is eventually received by all correct processors. Exercise
10.3 investigates whether insisting on the known bound ℓ is a stronger requirement for
deterministic protocols.

76

10.2.2 Metrics for mempool protocols

The latency of a mempool protocol is naturally defined as the infimum of all ℓ for which
the protocol satisfies the Mempool task. Then we can also consider notions of message
and communication that correspond in a natural way to those of Section 10.1.2. For
example, single transaction message complexity for a mempool protocol is defined by
considering executions where the environment sends only one transaction tr (to at least
one correct processor). The complexity is then the maximum number of messages sent
by correct processors between tr’s first receipt by any correct processor and the first
time-slot at which tr is received by all correct processors.

10.2.3 Lower bounds for Mempool metrics

If transactions are immediately forwarded to all other processors upon first receipt, it is
clear that latency = ∆. On the other hand, we will generally want to consider (poten-
tially probabilistic) mempool protocols with lower message/communication complexity
and larger latency than this.

With regard to message/communication complexity, it is interesting to observe that the
quadratic lower bound of Dolev and Reischuk (proved in Section 5.3) already holds for
deterministic mempool protocols.

Theorem 10.1. Consider the lock-step model with signatures and omission faults. Sup-
pose f < n − 1. Any deterministic protocol satisfying the Mempool task has single
transaction message complexity at least (f/2)2. [Andy: Add in the n bound.]

Proof. The proof is a simplified version of that in Section 5.3. Towards a contradiction,
suppose we are given a protocol violating the claimed bound. Since the claim is trivially
true if f = 0, we can suppose f > 0. First, we take an arbitrary subset P1 ⊆ Π of size
⌈f/2⌉, setting P2 = Π \ P1. Then:

• We consider the execution E1, in which all processors receive the transaction tr at
time-slot 0 and do not receive transactions from the environment at other time-
slots. The processors in P1 are faulty. Processors in P1 act correctly except that
they do not send or receive messages to or from each other, and ignore messages
from processors in P2.

• If each processor in P1 receives at least ⌈f/2⌉ messages from processors in P2 in
E1, then we are done, since the correct processors in P2 must then send at least
|P1| · f/2 ≥ (f/2)2 messages (combined). Otherwise, there exists p ∈ P1 that
receives at most ⌊f/2⌋ messages from processors in P2.

• Now we use the fact that, because P1 is of size ⌈f/2⌉, we have ⌊f/2⌋ processors
left to be faulty. We consider an execution E2 in which:

- Processor p is correct.

- All processors except p receive tr from the environment at time-slot 0. No
processor receives any transaction from the environment at time-slots > 0.

77

- The remaining processors in P1 act as in E1, and all processors in P2 act
correctly except that they do not send messages to p (this requires at most
⌊f/2⌋ of them to be faulty).

Analysis. Since p ignored messages from P2 in E1, does not receive messages from
P2 in E2, and does not receive messages from P1 in either execution, it sends the same
messages to processors in P2 in both executions. In fact, E1 and E2 are indistinguishable
for all processors in P2 that are correct in E2, and since f < n− 1 this set is non-empty.
So, E2 is an execution in which a correct processor receives tr at time-slot 0, at most
f processors are faulty, and in which p is a correct processor that does not receive tr.
This gives the required contradiction.

Theorem 10.1 concerns deterministic mempool protocols. Many practical mempool pro-
tocols use probabilistic gossip mechanisms, utilising techniques like random peer selec-
tion, to achieve better than quadratic expected complexity.

Now that we have formally defined the Mempool task, in the next section we formally
define the problem to be solved by SMR protocols that work ‘modulo’ a mempool.

10.3 Mempool-SMR (MSMR)

To formally specify the task that must be satisfied by SMR protocols working ‘modulo’
a mempool, we simply make extra assumptions on the transactions that processors
receive from the environment. So, Mempool-SMR (MSMR) is the same as SMR, except
we also suppose that, for some known bound ℓ: whenever a correct processor receives a
transaction tr at some time-slot t, all correct processors receive tr from the environment
by time-slot max{t,GST}+ ℓ.

When considering MSMR protocols, we modify the metrics of Sections 10.1.1 and 10.1.2
in the obvious way, so as to measure from the first point at which a transactions is
received by all correct processors, rather than the first point at which it is received by
any correct processor. So, latency is now defined as the supremum, over all executions
and all transactions tr first received by a correct processor after GST, of the time between
the first time-slot at which tr has been received by all correct processors and the first
time-slot at which tr is finalised by all correct processors.

Similarly, the message complexity of an MSMR protocol is the maximum number of
messages sent by correct processors (combined) in any interval of the form [t1, t2], such
that t1 ≥ GST +∆, some transaction tr has been received by all correct processors by
t1, and t2 is the first time-slot at which tr is finalised by all correct processors.

The definitions of communication complexity and single transaction message/communi-
cation complexity are modified similarly. The definition of amortised complexity remains
unchanged.

10.3.1 Lower bounds for MSMR

We consider latency first, and then message/communication complexity.

78

Latency. Essentially the same proof as for Theorem 5.2.4 (see Exercise 10.4) suffices
to establish an f∆ lower bound on latency for deterministic MSMR protocols in the
synchronous model with signatures and crash failures.

Message and communication complexity. We have shown that the Mempool task
already requires quadratic (single transaction) message complexity for deterministic pro-
tocols. This raises the question as to whether such a lower bound still holds for deter-
ministic MSMR protocols. In fact, it does, but the simplest proof we are aware of is
more complex than the original proof by Dolev and Reischuk.

[Andy: State and prove result.]

10.4 Analysing efficiency for Tendermint

[Andy: Discuss all metrics for all three variants. Although we have not yet formally
discussed how to model threshold signatures and random leaders, can still include dis-
cussion of these, with a pointer to the fact that formal modelling will be treated later.
Add a comment and exercise establishing that communication via the leader can be
used to give O(n2) single transaction message complexity (and O(n2) communication
complexity with blah blah blah).]

10.5 Exercises

Exercise 10.1. [Andy: Walk through proof that latency is at least (f + 1)∆.]

Exercise 10.2. [Andy: Walk through proof that deterministic protocols require Ω(n+f2)
single transaction message complexity]

Exercise 10.3. [Andy: Investigation as to whether requiring ℓ for the mempool is a
stronger requirement for deterministic protocols.]

Exercise 10.4. [Andy: Walk through proof that MSMR requires latency at least f∆.]

Chapter 11

PBFT’s view-change mechanism

Probably the best-known SMR protocol for partial synchrony (without synchronised
clocks) is PBFT [19], which stands for Practical Byzantine Fault Tolerance. PBFT was
introduced by Castro and Liskov in 1999, seventeen years before Tendermint, at a time
when demands on SMR protocols were rather different from those in the context of
‘blockchain’ (we’ll expand on some of these differences in Section 11.5). Accordingly,
there are a number of somewhat superficial differences between the original PBFT pro-
tocol and Tendermint. For our purposes, the crucial difference is the view-change mech-
anism, and that is what we will focus on in this chapter. As we will see, an advantage
of PBFT’s approach is that it gives a strong form of optimistic responsiveness: roughly,
this means that latency is a function of the actual (and unknown) network delay, rather
than the known upper bound ∆. This is important because ∆ may be conservatively set
to ensure liveness. However, this comes at the cost of higher communication complexity
during view changes.

In Section 11.1, we first outline the intuition behind PBFT’s approach to view changes.
In Section 11.2, we then formally describe and analyse a protocol that implements view
changes using PBFT’s approach. We define two forms of optimistic responsiveness in
Section 11.3, and then compare performance for PBFT’s and Tendermint’s view-change
mechanisms in Section 11.4. In Section 11.5, we summarise other differences between
the original PBFT protocol and Tendermint.

11.1 PBFT’s view changes: the intuition

In this section and the next, we’ll describe an implementation of PBFT’s view-change
mechanism that we’ll call Streamlined PBFT. The protocol is optimised to work effi-
ciently in a ‘blockchain’ context, in which we construct a chain of blocks of transactions,
with a new leader responsible for proposing each block. We’ll also specify the protocol
so that it is easily adapted to make use of threshold signatures (as discussed in Section
9.5.5).

Recall that the version of Tendermint described in Section 9.4 used a locking mechanism.
Upon seeing Q which is a stage 1 QC for some view v block b while in view v, processors
set their lock equal to Q before sending Q and a stage 2 vote for b to all processors.
Upon entering view v + 1, the leader for that view waits for 2∆ to ensure that (if the

79

80

view starts after GST) they have received the locks of all correct processors. After this
wait of 2∆, they take Q′ which is the greatest stage 1 QC they have received (with QCs
ordered by view). If Q′ is a QC for b′, then the leader proposes a block with b′ as parent.
If the view starts after GST then Q′ will be greater than or equal to the locks of all
correct processors, which means that all correct processors will be able to vote for the
proposed block.

The approach we will take now drops the locking mechanism. Recall that a TC (time-out
certificate) for view v is a set of n−f time-out messages, each from a different processor.
As for the version of Tendermint in Section 9.4, upon receiving Q that is either a stage
2 QC for some view v block or else a TC for view v, pi will forward Q to all processors
and enter view v + 1. Now, however, processors also send a new-view message to the
leader of view v + 1 upon entering view v + 1 because they receive a TC for view v. A
new-view message by pi includes:

(a) a view attestation: this is a signed message indicating the greatest view for which
pi has seen a stage 1 QC, and;

(b) a stage 1 QC for that view.

Upon entering view v + 1, the leader for that view no longer has to wait for a fixed
duration of 2∆. If they receive a stage 2 QC for a view v block b′, then this is immediate
proof that they should propose a block b with b′ as parent (as noted in Section 9.5.2,
Tendermint can also be modified to use this trick). Otherwise, they simply wait to
receive n− f new-view messages. Upon receipt of such a set of messages, they take the
greatest stage 1 QC included in any of those n− f new-view messages: suppose this is
Q, which is a stage 1 QC for b′ (say). They then construct a justification for proposing
a block b with b′ as parent. This justification is just Q, together with the set V of n− f
signed view attestations included in the n− f new-view messages. Processors will then
vote for b so long as it includes a (correctly formed) justification, in which the specified
stage 1 QC is for the same view as the greatest view attestation in V . Crucially, the
leader no longer waits for a fixed duration of 2∆. Instead, they can propose as soon as
they receive sufficient information, which may arrive much faster than 2∆ when actual
network delays are small.

Why does this approach work? Suppose some block b1 for view v1 is finalised.
Towards a contradiction, suppose there is some least v2 ≥ v1 such that some block b2
for view v2 receives a stage 1 QC, but does not have b1 as an ancestor. By the standard
quorum intersection argument (see Section 9.1.2), we have v2 > v1. Let P be the set of
processors who contribute to the stage 2 QC for b1, noting that correct processors in P
see a stage 1 QC for b1 before leaving view v1. Let P ′ be the set of n − f processors
whose signed view attestations are included in the justification for b2. By our choice of
v2, the justification included in b2 must specify a stage 1 QC, Q say, with Q.view < v1.
By the standard quorum intersection argument, |P ∩ P ′| ≥ f + 1 and so must include a
correct processor. It follows that the justification for b2 must include a view attestation
for some view ≥ v1. This gives the required contradiction.

81

11.2 PBFT’s view changes: formal treatment

11.2.1 Streamlined PBFT: the formal specification

The pseudocode uses a number of message types, local variables, functions and proce-
dures. Many of these are unchanged from Chapter 9, but for ease of reference we repeat
them below.

In what follows, we suppose that, when a correct processor sends a message to ‘all
processors’, it regards that message as immediately received by itself. We will describe
the protocol as an MSMR protocol, i.e., we assume that, whenever a correct processor
receives a transaction tr at some time-slot t, all correct processors receive tr from the
environment by time-slot max{t,GST}+ℓ. We write ∅ to denote the empty set or empty
sequence, and we let ⊥ be some default distinguished value.

The function lead(v). The value lead(v) specifies the leader for view v. To be
concrete, we set lead(v) := pi, where i = v mod n.

Votes. For d ∈ {1, 2}, a stage d vote is a message of the form (vote, v, d, τ) signed by
some processor in Π, where v ∈ N≥0 specifies the view corresponding to the vote and τ
is a finite binary string. If b is a block with hash τ , we also say the vote is a vote for b.

Stage 1 and 2 QCs. For d ∈ {1, 2}, a stage d QC is a set Q of n − f votes, each of
the form (vote, v, d, τ) for the same values of v and τ , and each signed by a different
processor in Π. We set Q.view = v, Q.block = τ . Stage 1 QCs are ordered by view and
then by least hash. We also say Q is a stage d QC for τ and, if b is a block with hash
τ , we say Q is a stage d QC for b.

Time-out messages and TCs: a time-out message for view v is a message of the form
(time-out, v), signed by some processor in Π. A set of n− f messages of this form, each
signed by a different processor, is called a time-out certificate (TC) for view v.

View attestations. Recall that ⟨m⟩i is the messagem signed by pi. A view v attestation
by pi is a signed tuple ⟨v, i, v′⟩i for some v′ ∈ N≥0 with v′ < v. When we wish to make
the value v′ explicit, we also refer to such a tuple as a view v attestation for v′. (If pi
sends a new-view message that includes the view v attestation ⟨v, i, v′⟩i, this will indicate
that, upon entering view v, v′ was the greatest view for which pi had seen a stage 1
QC.)

New-view messages. A new-view message for view v by pi is a tuple of the form
(⟨v, i, v′⟩i, Q), where Q is a stage 1 QC with Q.view = v′.

Justifications. A view v justification is either:

(a) A stage 2 QC for a view v − 1 block b′, or;

(b) A pair (Q,V), where:

• V is a set of n− f view v attestations, each by a different processor in Π.

• Let v′ be the greatest view such that V contains a view v attestation for v′.
Then Q is a stage 1 QC for a view v′ block, b′ say.

82

When (a) or (b) above holds, we also say that the view v justification is a view v
justification for the parent b′.

Blocks. A block b is a message specified by four values:

• b.view: this is a value in N≥0 that specifies the view corresponding to b;

• b.Tr: a sequence of transactions in T ;1

• b.par: either ⊥, or a hash value specifying the parent of b;

• b.just: a view b.view justification for the parent b.par if b.par ̸= ⊥.

A correct processor only regards a message as a block if it is of the form above. If
b.view = v, we also refer to b as a ‘view v block’. The genesis block is denoted bg and
satisfies bg.view = 0, bg.Tr = ∅, bg.par = ⊥, bg.just = ⊥. We regard bg as received by all
correct processors at time-slot 0. Blocks are ordered by b.view and then by least hash.
We stipulate that ∅ is a stage 1 QC and a stage 2 QC for bg, and set ∅.view = 0: all
processors therefore begin the protocol execution having received stage 1 and stage 2
QCs for bg.

The sequence of transactions specified by the ancestors of a block. Each block b
specifies an extended sequence of transactions, denoted b.Tr∗, as follows: we concatenate
the values b′.Tr for all ancestors b′ of b, removing any duplicate transactions.

The procedure MakeProposal. This procedure is executed by the leader p of view v
upon receiving Q that is either a stage 2 QC for a view v−1 block or a set of n−f new-
view messages for view v, each by a different processor in Π. To execute the procedure,
p proceeds as follows:

1. Form a sequence of distinct transactions T , containing all transactions received
but not finalised by p;

2. Set b.view := v, b.Tr := T .

3. If Q is a stage 2 QC for a view v− 1 block b′, set b.par := Q.block and b.just = Q.

4. Otherwise, if Q is a set of n− f new-view messages, let V be the set of n− f view
attestations in messages in Q. Let v′ be the greatest view such that V contains a
view v attestation for v′, and let Q′ be a stage 1 QC included in one of the new-
view messages in Q that include a view v attestation for v′ (so that Q′.view = v′).
Set b.par = Q′.block and b.just := (Q′, V).

5. Send b to all processors.

Finalising blocks and transactions. Processor p regards b as finalised upon receiving
a stage 2 QC for b. However, the transactions in b.Tr cannot be finalised until p has
received all ancestors of b. Formally, we define F (as required for SMR in Section 7.3)
as follows. For any set of messages M , let b be the greatest block such that M ∪ {bg}
contains: (i) a stage 2 QC for b, and (ii) all ancestors of b. Set F(M) := b.Tr∗.

1Recall that T is the set of possible transactions.

83

The local variable v: this is a local variable, which p uses to record the present view.
Initially, v = 1.

The local variables 1voted, 2voted and proposed: these record whether pi has al-
ready sent stage 1 and stage 2 votes in the present view, and whether pi has already
proposed a block for the view. They are initially set to 0.

The timer. Each processor p has a local timer, denoted Timer, which it can set to 0 at
any time, and which then automatically increments at each time-slot at which p is active.
This means that the timer increments in ‘real time’ after GST. Initially, Timer = 0.

The protocol instructions are specified in the box below.

Streamlined PBFT: the instructions for pi.
At time-slot 0:
Set v := 1, 1voted := 0, 2voted := 0, proposed := 0, Timer := 0; ▷ initialise

At every time-slot t:

If pi = lead(v), proposed = 0, and pi has received Q that is either a stage 2
QC with Q.view = v− 1, or else is a set of n− f new-view messages for view
v, each by a different processor in Π:
MakeProposal; Set proposed := 1; ▷ Propose a new block if leader

If pi has received a view v block b from lead(v) and 1voted = 0:
Send b and a stage 1 vote for b to all processors; ▷ stage 1 vote
Set 1voted := 1;

If pi has received a view v block b from lead(v) and Q which is a
stage 1 QC for b and if 2voted = 0:
Send a stage 2 vote for b to all processors; ▷ stage 2 vote
Set 2voted := 1;

If pi has received Q which is a stage 2 QC with Q.view = v′ ≥ v or which is a
TC for view v′ ≥ v:
Send Q to all processors;
If Q is a TC for view v′:
Let v′′ be the greatest view ≤ v′ such that pi has received some stage 1 QC
Q′ with Q′.view = v′′;
Send the new-view message (⟨v′ + 1, i, v′′⟩, Q′) to lead(v′ + 1);

Set v := v′ + 1, 1voted := 0, 2voted := 0, Timer := 0, proposed := 0;
▷ enter higher view

If Timer = 5∆:
Send a time-out message for view v to all processors ▷ send time-out

11.2.2 Streamlined PBFT: verifying Consistency and Liveness

Throughout this section, we consider the partially synchronous model (without synchro-
nised clocks), signatures and Byzantine faults, and we suppose that f < n/3. First, we
consider Consistency.

Lemma 11.1 (Consistency). Streamlined PBFT satisfies Consistency.

84

Proof. The proof works exactly as already specified in Section 11.1.

Next, we show that correct processors progress through the views.

Lemma 11.2. For each v ≥ 1, there is some first time-slot, tv say, at which a correct
processor enters view v. Also, tv′ > tv if v′ > v.

Proof. The proof is the same as the proof for Tendermint in Section 9.4.1. It follows
immediately that no correct processor can enter view v+1 before any correct processor
has entered view v, because entering view v + 1 requires either a stage 2 QC or a TC
for view v, to which some correct processors must contribute. To show that each tv
is defined, note that, upon entering any view, a correct processor sends the relevant
certificate (the stage 2 QC or TC) to all others. So, if any correct processor enters
infinitely many views, they all do. If there were some greatest view v entered by any
correct processor p, then all correct processors eventually enter view v. Then all correct
processors send time-out messages for view v, and so receive a TC for view v.

Next, we establish the equivalent of Lemma 9.2.

Lemma 11.3 (Correct leaders finalise new blocks). For each v ≥ 1, let tv be as defined
in the statement of Lemma 11.2. If tv ≥ GST and p = lead(v) is correct, then p
proposes a view v block b and all correct processors receive a stage 2 QC for b.

Proof. Suppose the conditions in the statement of the lemma hold. Towards a con-
tradiction, suppose it is not the case that p proposes a view v block b and all correct
processors receive a stage 2 QC for b by tv+6∆. If any correct processor received such a
stage 2 QC by tv+5∆ it would send it to all other processors, which gives an immediate
contradiction. No correct processor sends a time-out message for view v before tv +5∆,
so no processor can receive a TC for view v before this time. Since the first correct
processor to enter view v sends the corresponding certificate (a stage 2 QC or TC for
view v− 1) to all processors at tv, it follows that all correct processors are in view v for
the entirety of the interval [tv + ∆, tv + 5∆]. This holds because no correct processor
can leave view v without receiving either a stage 2 QC or TC for a view ≥ v, neither of
which can happen before tv + 5∆.

We have observed that all correct processors (including p = lead(v)) enter view v by
tv + ∆. If any correct processor enters view v upon receiving a stage 2 QC for view
v − 1, it sends that QC to all processors and they receive it by tv + 2∆. If not, then all
correct processors send new-view messages for view v to p by tv + ∆, meaning that p
receives (correctly formed) new-view messages from at least n−f processors by tv+2∆.
In either case, p sends a (correctly formed) view v block b to all processors by tv + 2∆,
which is received by all correct processors by tv + 3∆. All correct processors then send
a vote for b by tv+3∆, and receive a stage 1 QC for b by tv+4∆. All correct processors
then send a stage 2 vote for b, and receive a stage 2 QC for b by tv +5∆. This gives the
required contradiction.

To establish Liveness, it remains to prove the equivalent versions of Lemmas 9.3 (if p
is correct and finalises b then all correct processors receive all ancestors of b) and 9.4
(Liveness, i.e., every transaction received by a correct processor is eventually finalised).
The proofs of these lemmas are the same as for Tendermint.

85

11.3 Optimistic responsiveness

Roughly, optimistic responsiveness is the ability to finalise transactions at network speed,
i.e., with latency proportional to the actual (unknown) network delay, so long as pro-
cessors act correctly and while the network is synchronous. There are a number of ways
to formalise the notion. In this section we consider two simple variants.

Weakly optimistically responsive protocols. For a given execution, let δ be the
(unknown) maximum message delay after GST, i.e., the least value such that any mes-
sage sent to any processor at any time-slot t is delivered by max{t,GST} + δ. Note
that δ may be less than the known bound ∆. Let fa ≤ f be the actual (unknown)
number of processors that do not behave correctly. A protocol is weakly optimistically
responsive if there exists some known bound ∆∗ which is O(∆) and such that latency
for any transaction first received by a correct processor2 after GST+∆∗ is O(fa∆+ δ).

So, roughly, the definition allows for a ‘grace period’ after GST. Once that grace period
has passed, each faulty processor (in particular leaders) can cause a delay O(∆), but
the remaining contribution to latency is O(δ). Specifically, if all processors are correct,
latency will be O(δ) after GST+∆∗.

For most well-known protocols it will actually be the case that only faulty leaders can
cause delays, so that, for weakly optimistically responsive protocols, latency will be O(δ)
after GST+∆∗ so long as leaders are correct. We give a general definition that does not
explicitly refer to leaders, so that it applies uniformly to all protocols for the partially
synchronous model, including those that are not leader-based.

Strongly optimistically responsive protocols. The definition is the same, except
that we do not allow for a ‘grace period’. Let δ and fa be defined as above. A protocol is
strongly optimistically responsive if latency for any transaction first received by a correct
processor after GST2 is O(fa∆+ δ).

The key difference is that strongly optimistically responsive protocols achieve good la-
tency immediately after GST, whereas weakly optimistically responsive protocols may
require a grace period for the system to stabilise.

11.4 Comparing performance for PBFT/Tendermint view
changes

11.4.1 Communication complexity

Communication complexities for Tendermint and Streamlined PBFT are similar. In
Streamlined PBFT, each processor may send a new-view message to the leader upon en-
tering view v. This message is of size Θ(n), so that the combined cost over all processors
is O(n2). If threshold signatures are used (see Section 9.5.5), then new-view messages
will be of constant size, giving O(n) combined cost over all processors.

2This definition is given for SMR protocols. For MSMR, one instead measures from the first time-slot
by which the transaction has been received by all correct processors.

86

In both protocols, the leader sends a block to all. Suppose the transaction information
included in the block is of constant size. For both protocols, the block includes a stage
1 QC, which is of size Θ(n), or of constant size if threshold signatures are used. For
Streamlined PBFT, the block may also include a set of view attestations, which is of
size Θ(n). Since the leader must send the block to all processors, the total cost for
Tendermint is Θ(n2), or Θ(n) if threshold signatures are used. For Streamlined PBFT,
the need for the block to include n view attestations (in some cases) means that the
total cost is Θ(n2) in the worst case, even if threshold signatures are used.

For both protocols, the sending of stage 1 and stage 2 votes induces a total communi-
cation cost that is O(n2) per view. Tendermint requires processors to also send a stage
1 QC to all processors upon sending any stage 2 vote. This induces a communication
cost that is Θ(n3), or Θ(n2) if threshold signatures are used. Both protocols also require
processors to send stage 2 QCs to all processors upon first receiving them, inducing a
communication cost of the same order.

Finally, the sending of time-out messages and TCs induces O(n3) cost per view, or O(n2)
cost if threshold signatures are used. Overall, the cost for both protocols is Θ(n3) per
view, or Θ(n2) with the use of threshold signatures.

So why did we say PBFT’s approach has higher complexity? The version of PBFT we
have described here—Streamlined PBFT—is optimised for a blockchain context, with
rotating leaders proposing successive blocks. As we’ll see in Section 11.5, the original
PBFT used a stable leader who remains in charge until processors requested a change
due to lack of progress. Since view changes were rarer in that design, the protocol was
not optimised to handle them efficiently.

Even comparing Streamlined PBFT and Tendermint, however, there is a fundamental
difference in the communication complexities induced by view changes. This difference
will become significant when we consider Hotstuff in Chapter 13, and to understand it
one has to differentiate between mechanisms for view change and mechanisms for view
synchronisation.

Mechanisms for view change and view synchronisation. Roughly, a mechanism
for view change ensures that the leader receives enough information to propose a block
that other processors can vote for, while maintaining Consistency and Liveness. In
Tendermint this is achieved via a locking mechanism, while PBFT uses justifications.
On the other hand, a mechanism for view synchronisation ensures that, once any correct
processor enters a view after GST, all correct processors do so within some short time
(such as ∆). Generally, this is required to ensure that each view with a correct leader
that starts after GST finalises a new block. Tendermint and Streamlined PBFT both
achieve view synchronisation in the same way: processors enter views upon receiving
stage 2 QCs or TCs, and immediately forward these to all other processors. This induces
Θ(n3) communication cost per view, or Θ(n2) cost per view with the use of threshold
signatures.

Looking forward to Hotstuff. One of the basic aims of Hotstuff is to achieve commu-
nication cost that is O(n) in each view modulo the mechanism for view synchronisation.
More sophisticated mechanisms for view synchronisation can then be combined with Hot-
stuff (see Chapter 14) to achieve single transaction communication complexity O(n2).
The quadratic cost arises because f + 1 views may be required after GST to finalise a
new block, each inducing linear cost. Hotstuff achieves linear complexity within each

87

view using a simple idea: as well as using threshold signatures, all communication within
each view is relayed through the leader (see Exercise 9.2). If n processors each send votes
of constant size to the leader, who then forms a threshold signature of constant size and
sends this to all processors, the communication cost induced is linear, as opposed to the
quadratic cost induced if all processors send votes to all other processors. However, the
view-change mechanism employed by PBFT already induces quadratic cost in the case
that the leader must send a set of attestations of size Θ(n) to all processors. For this rea-
son, Hotstuff uses a view-change mechanism based on locking (similar to Tendermint’s),
but modified to also achieve strong optimistic responsiveness.

11.4.2 Comparing optimistic responsiveness

Weak optimistic responsiveness. The version of Tendermint described in Section
9.4 is not weakly optimistically responsive, because leaders always wait 2∆ after entering
the view before proposing a new block. However, we also observed in Section 9.5.2 that
the protocol is easily modified so that the leader of view v proposes a block immediately
upon receiving a stage 2 QC for a view v − 1 block. To see that this modified protocol
is weakly optimistically responsive, we analyse latency under the MSMR model. Let v
be the greatest view that any correct processor is in at GST and let GST + ∆∗ be the
first time at which any correct processor is in view v+2, noting that ∆∗ is O(∆). Recall
that δ is the (unknown) actual maximum message delay after GST, and that fa is the
(unknown) actual number of faulty processors.

Suppose first that fa = 0. Then, since all leaders are correct, view v+1 produces a new
finalised block in time O(∆) (the delay O(∆) results because view v may not produce
a new finalised block), and each view ≥ v + 2 produces a new finalised block in time
O(δ). It follows that latency for any transaction first received by a correct processor
after GST +∆∗ is O(δ).

If fa > 0, then suppose the transaction tr is first received by all correct processors at
t ≥ GST+∆∗. Let v′ be the greatest view that any correct processor is in at t, and let
v′′ be the least view > v′ with a correct leader. Then all correct processors enter view
v′′ by t+O(fa∆) and then finalise tr in time O(δ) after entering the view.

We will see below that Streamlined PBFT is weakly optimistically responsive because
it is strongly optimistically responsive.

Strong optimistic responsiveness. To see that the modified version of Tendermint
described in Section 9.5.2 is not strongly optimistically responsive, suppose fa = 0.
Suppose all correct processors enter some view v at GST and also receive the transaction
tr at GST. Suppose further that view v − 1 does not produce any finalised block. Then
the correct leader of view v waits 2∆ before proposing a new block, meaning that latency
for tr is Ω(∆).

It remains to show that Streamlined PBFT is strongly optimistically responsive. To
see this, suppose tr is received by all correct processors by t ≥ GST. Let v be the
greatest view that any correct processor is in at t. Suppose first that the leader of view
v is correct. Then all correct processors will enter view v + 1 by t + O(δ). Let v′ be
the least view ≥ v + 1 with correct leader. All correct processors will enter view v′ by
t+O(δ + fa∆) and will finalise tr in time O(δ) once in view v′. If the leader of view v

88

is faulty, then all correct processors enter view v′ by t+ O(fa∆) and will again finalise
tr in time O(δ) once in view v′.

11.5 The original PBFT

This section describes how the original PBFT protocol differs from Streamlined PBFT.
We do not give a formal specification, but provide sufficient detail to make the basic
protocol operation clear.

Stable leaders. In the original version of PBFT, each view has a designated leader as
in Streamlined PBFT. However, processors remain in each view until they see evidence
that the leader may be faulty. As detailed below, the leader of a view can make an
unbounded number of successive proposals, and it is only if sufficient time passes after
a processor receives a transaction without it being finalised that they send a message
to all other processors indicating that they wish to enter a new view. While the use of
stable leaders has efficiency advantages (removing the need for view changes while the
leader is correct during synchrony) it is generally avoided in the ‘blockchain’ context for
at least two reasons:

• So far, we have considered transactions only as abstract messages to be sequenced.
However, transactions will generally be instructions to update some database:
each transaction is really an operation that, when executed, updates the state
of the database (or ‘state machine’). In a context where these operations have
financial consequence, the ability of a leader to choose transaction ordering gives
it a greater level of control than is preferable for any single participant over an
extended period.3

• In the stable leaders approach, a single Byzantine leader can slow the protocol
for an unbounded period during synchrony by operating as if message delays are
always ∆.

Proposals are for individual transactions. Since PBFT was intended for a context
with lower transaction throughput, standard operation for PBFT involves the leader
proposing individual transactions. Rather than considering blocks of transactions, with
hash pointers used to specify the parent of each block, the leader allocates each received
transaction to a different slot number s. Upon hearing a proposal from the leader that
transaction tr should be allocated to slot number s, processors send stage 1 votes for the
proposal. Upon receiving a stage 1 QC, processors send stage 2 votes, and then finalise
tr in slot s upon receiving the corresponding stage 2 QC. There is no set bound on the
number of transactions that can be finalised in a given view.

Transaction execution and garbage collection. In PBFT, processors execute a
transaction in slot s upon finalising the transaction in slot s, if they have already executed
transactions for all previous slots. To remove the need to store old messages, the protocol
also uses ‘checkpoints’ at which proofs of the current state of the database/state machine

3A leader’s ability to choose transaction ordering can be financially valuable. For example, a leader
receiving a large ‘buy order’ on an exchange may be able to insert buy and sell orders either side of
the transaction to profit from the resulting price change. The profit that can be extracted by choosing
transaction ordering is often referred to as ‘MEV’ (maximum extractable value) [].

89

are produced. For some constant c (e.g., c = 100), whenever a processor executes a
transaction for a slot number that is a multiple of c, they send a message to all others
indicating the slot number and the resulting state. By the standard quorum intersection
argument, n− f such messages all indicating the same resulting state corresponding to
the same slot number constitute a checkpoint-proof that the state at that slot number
is correct. Upon receiving such a proof, processors can discard messages corresponding
to previous slot numbers.

View changes. In Streamlined PBFT, we separated time-out messages and new-view
messages. The former are sent to all processors for the purpose of view synchronisation,
while the latter are sent to the leader so that they can form a justification for their
proposal. In PBFT, the information in new-view messages is piggy-backed on the time-
out messages, and is therefore sent to all processors. When a processor times out during
view v they no longer vote for proposals in the view. To form an appropriate time-out
message, they take the checkpoint-proof for the greatest slot number s amongst those
they have received. In their time-out message, they include this checkpoint-proof and
every stage 1 QC they have received corresponding to a slot number greater than s.

Upon receiving a set T of n− f time-out messages for view v, the leader of view v + 1
forms a message for the start of that view that includes the messages in T . PBFT then
applies the view-change approach of Streamlined PBFT to individual slots. Let s′ be
the greatest slot such that some message in T includes a checkpoint-proof for slot s′.
Let s′′ be the greatest slot such that any message in T includes a stage 1 QC for slot
s′′. For each slot s ∈ (s′, s′′], if any message in T contains a stage 1 QC for slot s,
then the leader’s message for the start of the view contains a re-proposal for the same
corresponding transaction. Upon receiving a correctly formed leader’s message for the
start of the view, correct processors will send stage 1 votes for this re-proposal. By the
same quorum intersection argument as for Streamlined PBFT, this ensures Consistency:
any transaction finalised by a correct processor for some slot s ∈ (s′, s′′] must be re-
proposed in that slot, meaning that no other transaction can be finalised in that slot.
For each slot s in (s′, s′′] such that no message in T contains a stage 1 QC for slot s, the
new leader proposes the ‘null transaction’, and correct processors send stage 1 votes for
this proposal.

View synchronisation. Upon receiving a TC for view v, Streamlined PBFT had
processors send this TC to all others before entering view v+1. This ensured that (after
GST) all correct processors enter the next view within time ∆. The original PBFT
protocol takes a slightly different approach, in which processors do not resend a received
TC to all others. Upon receiving a TC for view v, a processor p immediately starts a
timer, whose expiration will cause it to send a time-out message for view v + 1. At any
point, if p receives f +1 time-out messages, each of which corresponds to a view greater
than or equal to its present view, p sends a time-out message for the smallest view in this
set, even if its timer has not expired. This suffices to ensure that, after GST, if p receives
a TC for view v at t, then all correct processors receive such a TC by t + 2∆: since p
has received n − f time-out message by t, all processors must receive n − 2f ≥ f + 1
time-out messages by t+∆, and so will send timeout messages by this time if they have
not already done so. Then all correct processors receive at least n−f time-out messages
by t+2∆. A disadvantage of this approach is that it increases required time-outs, since
processors are synchronised to within 2∆, rather than ∆ as for Streamlined PBFT.

Partial synchrony. A final difference is that the original PBFT paper does not assume
our standard version of partial synchrony. Let delay(t) be the maximum message delay

90

for any message sent at time-slot t in a given execution. Then the assumption is that, in
any given execution, ‘delay(t) does not grow faster than t indefinitely’. To accommodate
this assumption, PBFT utilises exponentially increasing successive time-outs. If p times
out without seeing any new transactions finalised in view v, then it sets the expiry time
for view v + 1 to be twice that for view v.

11.6 Exercises

Exercise 11.1. [Andy: Exercise on piggybacking new-view messages on time-outs. Does
this impact strong optimistic responsiveness?]

Chapter 12

Using oracles to model
cryptographic primitives

In Chapters 9 and 11, we introduced Tendermint and PBFT. These protocols can be
adapted to use threshold signatures, though they do not do so by default. In analysing
the communication complexity of both protocols, we have already informally considered
the impact of threshold signatures. In the next chapter, we will describe Hotstuff, which
uses threshold signatures by default. As preparation, this chapter gives a simple way
to model threshold signatures using an oracle. The oracle abstraction allows us to
analyse protocols without delving into cryptographic implementation details, while still
capturing the essential properties that the cryptographic primitives provide.

We also show how oracles can be used to model two other cryptographic primitives: a
common reference string (CRS), which provides shared setup information available to
all processors, and a common coin, which provides shared randomness. Both primitives
can be used for random leader selection. In Chapter 15, we will show how a common
coin can be used to circumvent the FLP Impossibility Theorem for the asynchronous
model.

In Section 12.1, we describe a simple modification of the state-transition-diagram model
that allows processors to make repeated oracle queries within a single time-slot. In
Section 12.2, we then show how to model threshold signatures, a CRS, and a common
coin.

12.1 Modifying the state-transition-diagram model

In this book, we do not attempt to define a general notion of oracle sufficient to model any
cryptographic primitive. In Section 12.2, we simply specify three different types of oracle,
used to model threshold signatures, a CRS, and a common coin. If a protocol uses one of
these oracles, then processors can send messages to the oracle (referred to as ‘querying’
the oracle). The oracle will respond by sending messages to some processors. Formally,
we suppose there exists a two-way communication channel between each processor and
each oracle.

91

92

One slightly subtle point is that some oracles may respond “instantaneously” to queries,
and processors should be able to query such oracles repeatedly in the same time-slot.
(By contrast, messages sent by one processor to another in a time-slot t cannot arrive
at their destinations prior to time-slot t + 1.) For example, p may query an oracle
that models a threshold signature scheme, and then make further queries at the same
time-slot depending on the response.

For this reason, we modify state-transition-diagrams to specify a special subset St∗ of
the set St of all states, indicating the states from which the processor will proceed to
the next time-slot without further oracle queries. At the beginning of the protocol’s
execution, a processor p begins in an initial state in St∗, which is determined by p’s
inputs. At each time-slot t for which p is active, p begins in some state s∗ ∈ St∗ and
receives a multi-set of messages on each of its channels. Processor p then enters a state
s (which may or may not belong to St∗). In the deterministic model, s is determined by
s∗, and the multi-set of messages received on each of its channels. In the probabilistic
model, s is a random variable with distribution determined by these values. Processor
p then repeatedly carries out the following steps, until instructed to proceed to the next
time-slot:

(1) Processor p receives R, which is a multi-set of messages sent to p by the oracles.

(2) If s ∈ St∗, then p sends a set of messages M and stops instructions for time-slot t.
The set of messages M is determined by s and R. Processor p will begin its next
active time-slot in state s.

(3) If s /∈ St∗, then p sends a set of oracle queries Q and enters a new state s′, where
Q and s′ are determined by s and R. Set s := s′ and return to (1).

For certain state-transition-diagrams, the instructions above might not terminate. In
this case, p sends no messages to other processors at time-slot t and is regarded as
inactive at all subsequent time-slots. If p is inactive at time-slot t, then it does not send
or receive any messages (to processors or oracles), and does not change state.

12.2 Oracle examples

First, we show how to use an oracle to model a threshold signature scheme. Then we
consider how to model a CRS and a common coin.

12.2.1 Modelling a threshold signature scheme

For any given message m, a ‘k-of-n threshold signature scheme’ allows signature shares
on m from any set of k out of the n processors to be combined to form a single signature
on m of constant-bounded length. The resulting threshold signature acts as proof that
at least k processors have signed m, but does not indicate which processors have signed
the message. Recall that H is a collision-free hash function. To model such a scheme,
the oracle O behaves as follows:

93

• To form its signature share on the message m, pi sends the message (share,m)
to the oracle. Upon sending this message to the oracle, pi receives the response
⟨H(m), i⟩O from the oracle upon transitioning to any new state. This message is
signed by the oracle O, and indicates for which processor it is the signature share
on m.

• To form a threshold signature on m given a set M of signature shares on m from
k different processors, pi sends (combine,M) to the oracle. Upon sending this
message to the oracle, pi receives the response ⟨H(m)⟩O from the oracle upon
transitioning to any new state. This message is the threshold signature on m.

Since the signature share is signed by the oracle, only pi can form its own signature share
on the message m. Similarly, since the threshold signature on m is signed by the oracle,
it can only be formed by a processor that has signature shares on m from k different
processors.

12.2.2 Modelling a CRS

It will often be useful for all processors to have access to some randomly chosen ‘common
reference string’. For example, this can be used to specify random leaders in a context
where processors should know the leader of each view ahead of time. Our CRS oracle
behaves as follows:

• At the start of the protocol execution, but after the adversary (if static) has chosen
which processors are faulty, the oracle samples an infinite binary string x uniformly
at random.

• To determine x(k) (the kth bit of x), processor pi sends the query k to the oracle.
Upon sending this message to the oracle, pi receives the response x(k) from the
oracle upon transitioning to any new state.

We note that when analysing expected latency for protocols that use a CRS to determine
leaders, it is common to consider GST to be chosen uniformly at random (rather than
being adversarially chosen, as standard). This is because the adversary could otherwise
use knowledge of the CRS and choose GST to ensure a maximum possible number of
views after GST have faulty leaders.

12.2.3 Modelling a common coin

The difference between a CRS and a common coin is that the latter gives a source of
randomness that is revealed over the course of the execution, in a manner that can be
used to prevent the adversary knowing values ahead of time. Our common coin oracle
produces a random string of some fixed length ℓ ∈ N for each view v ∈ N. Generally,
ℓ ≥ ⌈log2 n⌉, so that each random string of length ℓ can be used to determine a leader
from the set of n processors. The oracle works as follows:

94

• Messages to and from the oracle are subject to the standard message delays of the
model considered. For example, in the asynchronous model, such messages are
always delivered but message delays are arbitrary.

• To query the common coin for view v, processor pi sends the message v to the
oracle.

• Upon receipt of the message v sent by a set P of n − f different processors, the
oracle samples a string σ of length ℓ uniformly at random and sends (v, σ) to all
processors in P . Subsequently, upon receiving the message v from any processor
p, the oracle sends (v, σ) to p.

Further comments. In this book we consider idealised versions of cryptographic prim-
itives that can be realised in practice if certain cryptographic assumptions hold. In
reality, the safe use of such primitives requires restricting to polynomial-time-bounded
adversaries and accepting a negligible chance of error in any given execution. We take
the approach of using an idealised model to avoid these complications. While one could
recast all our arguments in the standard formal frameworks of cryptography, to do so
would be a distraction here.

Chapter 13

Hotstuff

In Chapter 11, we observed that the communication complexity of both Tendermint
and Streamlined PBFT is Θ(n2) per view when threshold signatures are used, and
Θ(n3) otherwise. When n is large—as in many blockchain applications with hundreds
or thousands of validators—this quadratic (or cubic) cost per view becomes a significant
bottleneck. The natural question arises: can we do better?

In this chapter, we introduce Hotstuff [20], a protocol designed to achieve O(n) commu-
nication complexity per view while maintaining strong optimistic responsiveness. The
key insight is simple: if all communication within a view is routed through the leader
and if threshold signatures are used to keep messages at constant size, then (if blocks are
of constant-bounded size) each view requires only O(n) total communication. However,
achieving this requires careful protocol design to avoid the pitfalls that forced earlier
protocols into quadratic complexity.

The block echoing problem. In the versions of Tendermint and PBFT described
in previous chapters, we instructed processors to echo a leader’s proposal to all other
processors upon first voting for it. This ensured that all correct processors receive all
finalised blocks, which is required for SMR as defined in Section 7.3. However, such ‘all-
to-all’ communication immediately induces Ω(n2) communication complexity in each
view, regardless of whether threshold signatures are used.

To achieve O(n) communication complexity per view, Hotstuff must forgo such block
echoing. Instead, the protocol guarantees only that finalised blocks are available—
meaning they can be retrieved by any processor that needs them—rather than im-
mediately delivered to all. As discussed in Section 9.5.3, processors can use a “pull”
mechanism to retrieve missing blocks from peers who possess them. This separation of
concerns allows the core consensus protocol to achieve linear complexity per view, while
block retrieval can be handled by a separate protocol optimised for that purpose.

Since Hotstuff does not explicitly ensure that all processors receive all finalised blocks, it
does not directly solve SMR as defined in Section 7.3. Instead, it solves a related problem
that we call Extractable SMR: roughly, this means solving SMR except that retrieving
certain finalised blocks may require additional communication. In Section 13.1, we
formally define this task.

Separating view change from view synchronisation. In Section 11.4, we distin-
guished between mechanisms for view change (ensuring leaders have enough information

95

96

to propose blocks that maintain Consistency) and mechanisms for view synchronisation
(ensuring correct processors enter the same view within a short time after GST). The
versions of Tendermint and Streamlined PBFT described in previous chapters achieved
view synchronisation by having processors forward stage 2 QCs and TCs to all oth-
ers upon entering a new view—an approach that induces Θ(n2) complexity (or Θ(n3)
without threshold signatures).

Hotstuff treats view synchronisation as a black box, focusing instead on minimising the
communication complexity of the view-change mechanism and the consensus logic within
each view. In Chapter 14, we describe efficient view synchronisation protocols that can
be combined with Hotstuff to achieve O(n2) overall single-transaction communication
complexity. The quadratic bound arises because O(f) views may be required after GST
to finalise a transaction (when faulty processors are leaders), with each view contributing
O(n) communication.

Achieving strong optimistic responsiveness. Recall from Section 11.3 that a pro-
tocol is strongly optimistically responsive if latency after GST is O(fa∆ + δ), where
fa is the actual number of faulty processors and δ is the actual (unknown) network
delay. In Section 11.4.2, we observed that Tendermint (even with the optimisation of
Section 9.5.2) is only weakly optimistically responsive: it requires a grace period af-
ter GST before achieving good latency. Streamlined PBFT achieves strong optimistic
responsiveness, but its view-change mechanism induces quadratic complexity.

Hotstuff achieves both strong optimistic responsiveness and linear complexity per view.
It does so using a locking mechanism similar to Tendermint’s, but modified so that
leaders do not need to wait a fixed duration before proposing. The key insight is to
use an extra round of voting: while Tendermint uses two stages of voting, Hotstuff uses
three. This additional round allows the protocol to maintain Consistency and Liveness
without requiring leaders to wait for locks to arrive.

Chapter outline. The remainder of this chapter is organised as follows. In Section 13.1,
we formally define Extractable SMR. In Section 13.2, we explain the intuition behind
Hotstuff’s design, focusing on why three stages of voting are sufficient for strong opti-
mistic responsiveness. In Section 13.3, we give a formal specification of the protocol.
Finally, in Section 13.4, we prove that Hotstuff satisfies Consistency and Liveness for
Extractable SMR, and that it is strongly optimistically responsive.

13.1 Extractable SMR

Before specifying Hotstuff, we must define the task it solves. As noted above, Hot-
stuff does not ensure that all correct processors immediately receive all finalised blocks.
Instead, it ensures that any processor can extract (retrieve) any finalised block, given
sufficient communication.

The setup. The setup is the same as for SMR (Section 7.3). We consider a set of n
processors, of which at most f may be Byzantine. Processors receive transactions from
the environment and must collectively agree on a sequence of finalised transactions. A
transaction is just a signed message, belonging to a set of signed messages T that is
known to the protocol (given as input to all processors). We allow that messages in

97

T may be signed by processors outside Π. If σ is a sequence of transactions, we write
tr ∈ σ to denote that the transaction tr belongs to the sequence σ.

The requirements. As for SMR, a protocol for Extractable SMR must specify a
function F that maps any set of messages to a sequence of transactions. Let M∗ be the
set of all messages that are received by at least one (potentially Byzantine) processor
during the execution. For any time-slot t, let M(t) be the set of all messages that are
received by at least one correct processor at a time-slot ≤ t. We require the following
conditions to hold for any sets of messages M1 and M2 and any transaction tr:

Consistency. If M1 ⊆ M2 ⊆ M∗, then F(M1) ⪯ F(M2).

Liveness. If correct p receives the transaction tr, there must exist t such that tr ∈
F(M(t)).

As for SMR, consistency suffices to ensure that, for arbitrary M1,M2 ⊆ M∗, F(M1) and
F(M2) are compatible. To see this, note that, by consistency, F(M1) ⪯ F(M1 ∪ M2)
and F(M2) ⪯ F(M1 ∪M2).

Relationship to SMR. Any protocol solving SMR also solves Extractable SMR. How-
ever, a protocol for Extractable SMR does not require correct processors to produce their
own finalised log. The requirement is simply that the finalised log can be extracted from
the messages received by all correct processors combined. A protocol for Extractable
SMR can therefore be converted into a protocol for SMR by having correct processors
echo certain received messages.

Variants of Extractable SMR. Just as for SMR (see Section 10.3), we can consider
a version of Extractable SMR that assumes transactions are disseminated by a separate
mempool protocol. Extractable MSMR is the same as Extractable SMR, except we also
suppose that the following holds for some known bound ℓ: whenever a correct proces-
sor receives a transaction tr at some time-slot t, all correct processors receive tr from
the environment by time-slot max{t,GST} + ℓ. Appendix C also defines ‘extractable’
analogues of BA and BB. A natural question that arises is as to whether the quadratic
lower bound on communication complexity established by Dolev and Reischuk (see Sec-
tion 5.3) still holds for these tasks. In Appendix C we establish a negative answer:
Extractable BA can be solved with communication complexity O(f log f).

13.2 The intuition behind Hotstuff

In this section, we explain the key ideas behind Hotstuff. We focus on two questions: (1)
why does Hotstuff use three stages of voting instead of two? and (2) how does Hotstuff
achieve linear communication complexity per view?

13.2.1 Why three stages of voting?

Recall the locking mechanism in Tendermint (Section 9.2). Upon seeing a stage 1 QC for
a block b, processors lock on b and will not vote for incompatible blocks in subsequent
views unless they see a stage 1 QC for a higher view. This ensures Consistency: if b is

98

finalised (receives a stage 2 QC), then at least f + 1 correct processors are locked on b,
preventing any incompatible block from receiving enough votes.

The problem with Tendermint’s approach is that leaders must wait to ensure they have
received the locks of all correct processors before proposing, otherwise some correct pro-
cessors may not be able to vote for their proposal, threatening Liveness. In Section 9.4,
leaders wait 2∆ after entering a view before proposing. This waiting is necessary because
a correct processor p might lock on some block b just before entering a view, and might
enter the view ∆ time-slots after the leader, meaning that the leader only receives the
lock 2∆ time-slots after entering the view.

Streamlined PBFT avoids this waiting by using justifications: leaders include view at-
testations from n − f processors, proving they have gathered enough information to
propose safely. However, these attestations are of size Θ(n) (even with threshold signa-
tures), inducing quadratic communication complexity when the leader sends them to all
processors.

Hotstuff’s solution: three stages of voting. Hotstuff uses a third stage of voting
to avoid both the waiting of Tendermint and the large justifications of PBFT. The key
insight is as follows:

• In Tendermint, processors lock upon seeing a stage 1 QC and finalise upon seeing
a stage 2 QC. This means that when a correct processor sets its lock, it may be
the only processor to have seen the corresponding QC.

• In Hotstuff, processors lock upon seeing a stage 2 QC and finalise upon seeing a
stage 3 QC. Any proposal by a leader must include a stage 1 QC for the parent.
At the start of the view, the leader waits to hear from n− f processors as to the
greatest stage 1 QC they have received. If the greatest stage 1 QC amongst these
n− f messages is Q, which is a stage 1 QC for b, then the leader proposes a block
b′ with b as parent, and includes Q with the proposal. Correct processors vote for
the proposal so long as Q.view is at least the view corresponding to their lock.

Note first that these modifications leave the proof of Consistency essentially unchanged.
If a block b is finalised, then at least f + 1 correct processors lock on b, preventing any
incompatible blocks from receiving a stage 1 QC in subsequent views.

However, the key point is that Liveness is now satisfied without the leader having to
wait 2∆. If correct p has locked on some block, then it may be the only processor to
have seen the corresponding stage 2 QC, but at least n − f processors must have seen
a stage 1 QC for the block. By the standard quorum intersection argument, at least
one of these processors must be correct and also be amongst the n− f processors whose
messages are received by the leader before forming their proposal. A correct leader is
therefore guaranteed to produce a block that other correct processors can vote for.

13.2.2 Achieving linear complexity per view

The second key idea in Hotstuff is to route all communication through the leader. Instead
of having all processors send votes to all others (which would induce Ω(n2) complexity),

99

processors send votes only to the leader. The leader collects n−f votes, forms a threshold
signature (a ‘threshold QC’ of constant size), and broadcasts this to all processors.

This approach requires O(n) messages per stage of voting:

• Each processor sends one vote to the leader: n messages.

• The leader broadcasts the threshold QC to all processors: n messages.

With three stages of voting, this gives O(n) communication per view (assuming messages
are of constant size, which requires threshold signatures).

The cost of view changes. When a view times out without producing a finalised
block, processors must synchronise to enter the next view. Hotstuff treats this view
synchronisation as a black box. When we formally specify Hotstuff in the next section,
we will use a simple mechanism for view synchronisation that entails quadratic cost per
view. Then, in Chapter 14, we will consider more efficient methods. The view-change
mechanism itself requires only that the new leader receives stage 1 QCs from other
processors. Since QCs are of constant-bounded size with threshold signatures, this can
be achieved with O(n) communication.

13.3 Hotstuff: the formal specification

We now give a formal specification of Hotstuff. The protocol uses threshold signatures
as modelled in Section 12.2.1. We describe the protocol for the partially synchronous
model without synchronised clocks.

In what follows, we suppose that, when a correct processor sends a message to ‘all
processors’, it regards that message as immediately received by itself. We will describe
the protocol as a protocol for Extractable MSMR, i.e., we assume that, whenever a
correct processor receives a transaction tr at some time-slot t, all correct processors
receive tr from the environment by time-slot max{t,GST}+ ℓ. We write ∅ to denote the
empty set or empty sequence, and we let ⊥ be some default distinguished value.

The pseudocode uses a number of message types, local variables, functions and proce-
dures. Many of these are unchanged from Chapters 9 and 11, but for ease of reference
we repeat them below.

The function lead(v). The value lead(v) specifies the leader for view v. To be
concrete, we set lead(v) := pi, where i = v mod n.

Votes. For d ∈ {1, 2, 3}, a stage d vote is a message of the form (vote, v, d, τ) signed by
some processor in Π, where v ∈ N≥0 specifies the view corresponding to the vote and τ
is a finite binary string. If b is a block with hash τ , we also say the vote is a vote for b.

Stage 1, 2, and 3 QCs. For d ∈ {1, 2, 3}, a stage d QC is a set Q of n− f votes, each
of the form (vote, v, d, τ) for the same values of v and τ , and each signed by a different
processor in Π. We set Q.view = v, Q.block = τ . A stage d threshold QC Q′ can
also be formed from Q using the threshold signature scheme, and then we also define
Q′.view = v, Q′.block = τ . Stage 1 QCs and threshold QCs are ordered by view and
then by least hash. We also say Q (or Q′) is a stage d (threshold) QC for τ and, if b is a

100

block with hash τ , we say Q (or Q′) is a stage d (threshold) QC for b. Without explicit
mention in the pseudocode, we suppose that whenever a correct processor first receives
a QC, it immediately forms the corresponding threshold QC and regards the latter as
received.

The lock. Each processor maintains a local variable lock, initially set to lock = ∅.
The lock is always a stage 2 threshold QC (or ∅).

Time-out messages and TCs: a time-out message for view v is a message of the form
(time-out, v), signed by some processor in Π. A set of n− f messages of this form, each
signed by a different processor, is called a time-out certificate (TC) for view v. The
threshold signature scheme can be used to form a threshold TC from a TC. Without
explicit mention in the pseudocode, we suppose that whenever a correct processor first
receives a TC, it immediately forms the corresponding threshold TC and regards the
latter as received.

New-view messages. A new-view message for view v by pi is a tuple of the form
(v, i,Q), where Q is a stage 1 threshold QC.

Blocks. A block b is a message specified by four values:

• b.view: this is a value in N≥0 that specifies the view corresponding to b;

• b.Tr: a sequence of transactions in T ;1

• b.par: either ⊥, or a hash value specifying the parent of b;

• b.QC: a stage 1 threshold QC for b.par if b.par ̸= ⊥.

A correct processor only regards a message as a block if it is of the form above. If
b.view = v, we also refer to b as a ‘view v block’. The genesis block is denoted bg and
satisfies bg.view = 0, bg.Tr = ∅, bg.par = ⊥, bg.QC = ⊥. We regard bg as received by all
correct processors at time-slot 0. Blocks are ordered by b.view and then by least hash.
We stipulate that ∅ is a stage 1, 2, and 3 QC for bg, and set ∅.view = 0: all processors
therefore begin the protocol execution having received stage 1, 2, and 3 QCs for bg.

The sequence of transactions specified by the ancestors of a block. Each block b
specifies an extended sequence of transactions, denoted b.Tr∗, as follows: we concatenate
the values b′.Tr for all ancestors b′ of b, removing any duplicate transactions.

The procedure MakeProposal. This procedure is executed by the leader p of view v
to determine a new block. To execute the procedure, p:

1. Lets Q be the greatest stage 1 threshold QC it has received (including those in
new-view messages).

2. Forms a sequence of distinct transactions T , containing all transactions received
but not finalised by p;

3. Sets b.view := v, b.Tr := T , b.par := Q.block and b.QC = Q.

4. Sends b to all processors.

1Recall that T is the set of possible transactions.

101

Valid proposals. At time-slot t, pi regards a block b as a valid proposal for view v if all
of the following conditions are satisfied: (i) b.view = v; (ii) b.par ̸= ⊥; (iii) Q := b.QC is
a stage 1 threshold QC for b.par, and; (iv) Q.view ≥ lock.view.

Finalising blocks and transactions. We define F as follows. For any set of messages
M , let b be the greatest block such that M ∪ {bg} contains: (i) a stage 3 threshold QC
for b, and (ii) all ancestors of b. Set F(M) := b.Tr∗.

The local variable v: this is a local variable, which p uses to record the present view.
Initially, v = 1.

The local variables 1voted, 2voted, 3voted, 1sent, 2sent, 3sent, sentnv, and
proposed: these record whether pi has already sent stage 1, stage 2, and stage 3 votes
in the present view, whether pi (as leader) has already sent stage 1, stage 2, and stage 3
threshold QCs in the present view, whether pi has already sent a new-view message for
view v, and whether it has proposed a block for the view. They are all initially set to 0.

The timer. Each processor p has a local timer, denoted Timer, which it can set to 0 at
any time, and which then automatically increments at each time-slot at which p is active.
This means that the timer increments in ‘real time’ after GST. Initially, Timer = 0.

The pseudocode for Hotstuff (which only details what pi should carry out within each
view) is below.

Hotstuff: the instructions for pi.
At every time-slot t:

If sentnv = 0:
Let Q be the greatest stage 1 threshold QC that pi has received;
Send (v, i, Q) to lead(v) and set sentnv := 1; ▷ Send new-view message

If pi = lead(v), proposed = 0, and pi has received new-view messages for view
v from at least n− f processors:
MakeProposal; Set proposed := 1; ▷ Propose a new block if leader

If pi has received a valid proposal b for view v from lead(v) and 1voted = 0:
Send a signed stage 1 vote for b to lead(v); ▷ stage 1 vote
Set 1voted := 1;

For d ∈ {1, 2, 3}, if pi = lead(v), dsent = 0, and pi has received Q which is a
stage d QC for some view v block:
Form a threshold QC Q′ from Q;
Send Q′ to all processors; Set dsent := 1; ▷ leader sends stage d threshold QC

For d ∈ {1, 2}, if dvoted = 1, (d+ 1)voted = 0, and pi has received Q which is
a stage d threshold QC for some view v block b:
Send a stage (d+ 1) vote for b to lead(v); ▷ Stage 2 or 3 vote
Set (d+ 1)voted := 1;
If d = 2, set lock := Q; ▷ set lock

The instructions for view synchronisation are in the box below.

102

View synchronisation: the instructions for pi.
At every time-slot t:
If Timer = 9∆:
Send a time-out message for view v to all processors ▷ send time-out

If pi has received Q which is a stage 3 threshold QC with Q.view = v′ ≥ v or
which is a threshold TC for view v′ ≥ v:
Send Q to all processors;
Set v := v′ + 1, 1voted := 0, 2voted := 0, 3voted := 0;
Set 1sent := 0, 2sent := 0, 3sent := 0, proposed := 0;
Set sentnv := 0, Timer := 0; ▷ enter higher view

13.4 Hotstuff: the analysis

Throughout this section, we consider the partially synchronous model (without synchro-
nised clocks), signatures and Byzantine faults, and we suppose that f < n/3.

13.4.1 Consistency and Liveness

First, we establish Consistency.

Lemma 13.1 (Consistency). Hotstuff satisfies Consistency.

Proof. The proof is almost identical to that for Tendermint. For d ∈ {1, 2, 3}, let us say
that block b ‘receives a stage d QC’ if b = bg or at least one correct processor receives a
stage d QC or threshold QC for b. If d ∈ {1, 2}, any block b that receives a stage d+ 1
QC must also receive a stage d QC, since no correct processor sends a stage d+ 1 vote
for b before receiving a stage d threshold QC for b.

To argue that the protocol satisfies Consistency, it suffices to show that no two incom-
patible blocks can receive stage 3 QCs. Towards a contradiction, suppose that there
exists a least v such that:

• Some b with b.view = v receives stage 1, 2, and 3 QCs, Q1, Q2, and Q3 say.

• For some least v′ ≥ v, there exists b′ such that b′ is incompatible with b, with
b′.view = v′ and b′.QC = Q0 (say), and the block b′ receives a stage 1 QC, Q4 say.

If v = v′ then, by the quorum intersection argument of Section 9.1.2, some correct
processor must have sent votes in both Q1 and Q4. This gives a contradiction since
correct processors send at most one stage 1 vote in each view.

So, suppose v′ > v. Then, by the same quorum intersection argument, some correct pro-
cessor p must have sent votes in both Q3 and Q4. This gives the required contradiction,
since p must set its local value lock to be a stage 2 threshold QC for b while in view
v. However, our choice of (v, v′) and the fact that b′ is incompatible with b means that
Q0.view < v, so that p would not regard the proposal b′ as valid while in view v′ and
would not produce a vote in Q4.

103

Next we establish that correct processors progress through the views.

Lemma 13.2. For each v ≥ 1, there is some first time-slot, tv say, at which a correct
processor enters view v. Also, tv′ > tv if v′ > v.

Proof. The proof is a small modification of that in Section 9.4.1 and is left as an exercise
(Exercise 13.1).

Next, we establish the equivalent of Lemma 9.2.

Lemma 13.3 (Correct leaders finalise new blocks). For each v ≥ 1, let tv be as defined
in the statement of Lemma 13.2. If tv ≥ GST and p = lead(v) is correct, then p
proposes a view v block b and all correct processors receive a stage 3 threshold QC for b.

Proof. Suppose the conditions in the statement of the lemma hold. For each pi ∈ Π, let
locki denote the local variable lock as defined for pi.

Towards a contradiction, suppose it is not the case that p proposes a view v block b and
all correct processors receive a stage 3 QC for b by tv + 9∆. If any correct processor
received such a stage 3 QC by tv + 8∆, the first to do so would send it to all other
processors, which gives an immediate contradiction. No correct processor sends a time-
out message for view v before tv + 9∆, so no processor can receive a TC or threshold
TC for view v before this time. Since the first correct processor to enter view v sends
the corresponding certificate (a stage 3 threshold QC or threshold TC for view v − 1)
to all processors at tv, it follows that all correct processors are in view v for the entirety
of the interval [tv +∆, tv + 8∆]. This holds because no correct processor can leave view
v without receiving either a stage 3 threshold QC or a threshold TC for a view ≥ v,
neither of which can happen before tv + 8∆.

Suppose pi is correct and that, before entering view v, pi most recently set locki to
some stage 2 threshold QC Q′. Since n− f votes are required to form a stage 2 QC and
correct processors do not send stage 2 votes before seeing a stage 1 threshold QC for the
same block, it follows that at least f + 1 correct processors receive a stage 1 threshold
QC for Q′.block before entering view v. By the standard quorum intersection argument,
it follows that when p runs MakeProposal in view v, it has received a new-view message
for view v from at least one correct processor that received a stage 1 threshold QC for
Q′.block before entering view v. Note that pi does not redefine locki while in view v
before sending a stage 1 vote: this is because locki is only set when sending a stage 3
vote, which requires having already sent stage 1 and stage 2 votes for the view. From
the definition of the procedure MakeProposal, it follows that p proposes a view v block
b by tv + 2∆ such that, for Q = b.QC, Q.view ≥ Q′.view. Since our choice of pi was
arbitrary amongst correct processors, all correct processors send stage 1 votes for b to
p by tv + 3∆. All correct processors will then receive a stage 1 threshold QC for b by
tv + 5∆, and will send a stage 2 vote for b to p by this time-slot. All correct processors
then receive a stage 2 threshold QC for b by tv + 7∆, and will send a stage 3 vote for
b to p by this time-slot. All correct processors will then receive a stage 3 threshold QC
for b by tv + 9∆, giving the required contradiction.

Next, we establish Liveness.

104

Lemma 13.4 (Liveness). Hotstuff satisfies Liveness as defined for Extractable MSMR
protocols.

Proof. Suppose all correct processors receive the transaction tr by t0. Suppose the first
correct processor to enter view v does so at t1 ≥ max{GST, t0} and that p = lead(v)
is correct. By Lemma 13.3, p proposes a block b and all correct processors receive a
stage 3 threshold QC for b. In fact, the proof suffices to show that all correct processors
receive such a QC before entering any later view. Any block receiving a stage 1 QC
must have been received by at least one correct processor (who voted for it), and that
processor must have verified that the block includes a valid stage 1 QC for its parent.
It follows by induction that all ancestors of b receive stage 1 QCs and are received by
correct processors. If t2 is any time-slot by which all correct processors are in a view
> v, it follows that tr ∈ F(M(t2)), as required.

13.4.2 Strong optimistic responsiveness

Defining strong optimistic responsiveness for Extractable MSMR. In Section
11.3 we defined strong optimistic responsiveness for SMR and MSMR protocols. Since
Hotstuff only satisfies the weaker form of Liveness defined for Extractable MSMR, we
first need to consider how strong optimistic responsiveness should be defined for protocols
satisfying this task. We modify the definition in the obvious way. Let δ be the (unknown)
maximum message delay after GST and let fa ≤ f be the actual (unknown) number
of processors that do not behave correctly. For a transaction tr that is received by
some correct processor, let t1 be the first time-slot at which tr has been received by all
correct processors (assumed to exist for MSMR) and let t2 be the least time-slot such
that tr ∈ F(M(t2)). Latency for tr is defined to be max{0, t2 − t1}. A protocol for
Extractable MSMR is strongly optimistically responsive if latency for any transaction
first received by all correct processors after GST is O(fa∆+ δ).

Lemma 13.5. Hotstuff is strongly optimistically responsive as a protocol for Extractable
MSMR.

Proof. Suppose tr is received by all correct processors by t ≥ GST. Let v be the greatest
view that any correct processor is in at t. Suppose first that the leader of view v is correct.
Either view v will produce a new finalised block by t+ O(δ), or a TC for the view will
be received by all correct processors by t+O(δ). Either way, all correct processors will
enter view v + 1 by t + O(δ). Let v′ be the least view ≥ v + 1 with correct leader. All
correct processors will enter view v′ by t + O(δ + fa∆) and will finalise a block b for
which tr ∈ b.Tr∗ in time O(δ) once in view v′. If the leader of view v is faulty, then all
correct processors enter view v′ by t+O(fa∆) and will again finalise a block b for which
tr ∈ b.Tr∗ in time O(δ) once in view v′.

13.4.3 Further considerations

We defer the formal analysis of message and communication complexity for Hotstuff
until we have considered more efficient methods for view synchronisation in Chapter 14.
For now, we observe that the instructions for Hotstuff clearly incur linear communication

105

complexity within each view if blocks are of constant-bounded size. However, the method
of view synchronisation we have used in this chapter incurs quadratic cost per view.

Hotstuff achieves linear communication cost within each view by using the leader as a
relay for votes and QCs. Since this increases the number of rounds of communication,
it is natural to ask: does this actually increase the efficiency of the protocol? Doesn’t
routing through the leader create a bottleneck? Is latency decreased, or is the ability to
handle high throughput (i.e., a large number of transactions per second) increased? We
will revisit these issues in Chapter 22.

13.5 Exercises

Exercise 13.1. [Andy: View progression proof.]

Chapter 14

View synchronisation protocols

106

Chapter 15

Protocols for asynchrony

[Andy: RB, then VABA]

107

Chapter 16

Combining erasure codes with
Reliable Broadcast

108

Chapter 17

Payment systems

109

Chapter 18

DAG-based protocols

[Andy: Intro. Using DAG for payment systems (shows payment systems are easier than
consensus). Then a ps protocol (easiest possible).]

110

Chapter 19

Accountability

111

Chapter 20

Recovery

112

Chapter 21

Player reconfiguration protocols

113

Chapter 22

The Pipes model for latency and
throughput analysis

114

Appendix A

Communication complexity for
the crash-fault-model

In this appendix, we give a simple proof that binary Crash-fault Broadcast can be
solved with communication complexity n + f . The proof is aimed at simplicity rather
than practicality. Accordingly, we make no effort to minimise the time before correct
processors output.

The intuition. The basic idea behind the protocol is almost trivial. We consider the
processors p0, . . . , pn−1 ordered so that p0 is the broadcaster. We attempt to pass p0’s
input value v from one processor to the next in order, so that each can set its own value
to v and output v. However, we must also accommodate the possibility that up to f
processors may crash. To do so, we let t∗0 = 0 and set t∗i for i > 0 to be some time-slot
by which pi expects to be passed a value by pi−1 if the latter processor is not faulty: we
will work out precisely how to define t∗i for i > 0 subsequently. If i > 0 and pi does not
receive a value from pi−1 by t∗i , then it sends a ‘request value’ message to pi−2 (or sets
its own value to be some default value if i − 2 < 0). If pi−2 is not faulty, then it will
send its value to pi, so that pi can then pass this value to pi+1. Otherwise, if pi does
not receive any value from pi−2 (by t∗i + 2), it requests a value from pi−3 (if i− 3 ≥ 0),
and so on.

Let fa ≤ f be the actual number of faulty processors. Then each of the n − fa correct
processors (except, perhaps, the last) sends one message to the next processor in the
sequence. So far, that means correct processors sending n−fa messages. If pi+1, . . . , pi+k

is a consecutive sequence of faulty processors, they may cause pi to send an extra k
messages (in response to requests for its value), and may also cause pi+k+1 to send an
extra k (request) messages. So, each faulty processor can cause the correct processors to
send at most two extra messages, and the correct processors send a total of (n− fa) +
2fa = n+ fa messages.

To define each t∗i for i > 0, we must choose some sufficiently large value. Given t∗i−1, it
suffices to set t∗i = t∗i−1+2(f+1)+1, since pi must send at most f+1 request messages.
Sending each request message and waiting for a response requires two time-slots.

Keeping ‘request value’ messages small. Values are either 0 or 1, meaning that mes-
sages that pass values need only be a single bit. However, to achieve communication
complexity n + f , we must also keep ‘request value’ messages small. Since processors

115

116

only send values to processors that are greater in the ordering, and only send ‘request
value’ messages to processors that are earlier in the ordering, this can be achieved by
sending 0 to request a value: processor pi can interpret receiving a 0 from pj for j > i
as requesting their value.

The protocol specification. Let the processors be ordered so that p0 is the broad-
caster. For i ∈ N≥0, let t

∗
i be defined as above. Each processor pi maintains a local value

v, initially undefined. The instructions are shown below.

Crash-fault Broadcast: the instructions for pi at time-slot t.
If v is undefined and i = 0:
Set v := input; output v; ▷ leader sets v

If v is undefined and pi has received v′ ∈ {0, 1} from some pj for j < i:
Set v := v′; output v; ▷ set value and output

If v is defined, i < n− 1, and pi has not yet sent a message to pi+1:
Send v to pi+1 ▷ pass on value

If v is defined and pi receives 0 from some pj for j > i at t:
Send v to pj ▷ pass on value due to request

If v is undefined and t = t∗i + 2k for k ∈ N≥0:
If i− k − 2 ≥ 0, send 0 to pi−k−2 ▷ request value
If i− k − 2 < 0, set v := 0; output v; ▷ default to 0

Analysis. First, we establish satisfaction of Termination, Agreement, and Validity.

To show Termination is satisfied, we establish a stronger result by induction: if pi is
correct, then it defines its local value v and outputs before t∗i+1. For i = 0, the result
is immediate. So, suppose the claim holds for all i − 1 < n − 1. Then pi either defines
its local value v by t∗i , or else must request values from at most f previous processors
before either setting its value to the default 0, or requesting a value from some correct
processor pj . In the latter case, it follows from the induction hypothesis that pj has
already defined its value, and so passes this value to pi. Processor pi therefore defines
its local value by t∗i + 2(f + 1) < t∗i+1, as claimed.

To establish Agreement, let i be the least value in [0, n− 1] such that pi is correct, and
suppose pi outputs x (after setting its value to x). If j > i and if pj defines its local
value and outputs, then this value is passed to it by some processor pk where i ≤ k < j:
as established above, t∗i and t∗j are set so that pi sets its value to x prior to t∗j and will
send this value to pj if requested, so that pj does not request values from processors
before pi. It follows by induction that if j > i and pj outputs, then it outputs the same
value x as pi. This establishes Agreement, as required.

To establish Validity, let pi and x be as defined in the discussion of Agreement above. If
the broadcaster is correct, then pi = p0 and x is p0’s input. So, correct processors give
the broadcaster’s input as their output.

That the protocol has communication complexity n+ f then follows as explained previ-
ously.

Appendix B

Recursive Phase-King

[Andy: To add]

117

Appendix C

Bounding complexity for
Extractable BA

[Andy: To add]

118

Bibliography

[1] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982. ISSN 0164-0925.
doi: 10.1145/357172.357176. URL https://doi.org/10.1145/357172.357176.

[2] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[3] Russell Turpin and Brian A Coan. Extending binary byzantine agreement to mul-
tivalued byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

[4] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine
agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[5] Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient
consensus requires t+ 1 rounds. Information Processing Letters, 71(3-4):155–158,
1999.

[6] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. Journal of the ACM (JACM), 32(1):191–204, 1985.

[7] Piotr Berman, Juan A Garay, and Kenneth J Perry. Bit optimal distributed con-
sensus. In Computer science: research and applications, pages 313–321. Springer,
1992.

[8] Atsuki Momose and Ling Ren. Optimal communication complexity of authenticated
byzantine agreement. arXiv preprint arXiv:2007.13175, 2020.

[9] Zvi Galil, Alain Mayer, and Moti Yung. Resolving message complexity of byzan-
tine agreement and beyond. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 724–733. IEEE, 1995.

[10] Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1:26–39, 1986.

[11] P Berman, JA Garay, and KJ Perry. Recursive phase king protocols for distributed
consensus. Penn State Report CS-89-24, 1989.

[12] Srivatsan Sridhar, Ertem Nusret Tas, Joachim Neu, Dionysis Zindros, and
David Tse. Consensus under adversary majority done right. arXiv preprint
arXiv:2411.01689, 2024.

[13] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):
374–382, 1985.

119

https://doi.org/10.1145/357172.357176

Bibliography 120

[14] Eli Gafni and Giuliano Losa. Time is not a healer, but it sure makes hindsight 20:
20. In International Symposium on Stabilizing, Safety, and Security of Distributed
Systems, pages 62–74. Springer, 2023.

[15] Hagen Völzer. A constructive proof for flp. Information processing letters, 92(2):
83–87, 2004.

[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[17] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, University of Guelph, 2016.

[18] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437, 2017.

[19] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
number 1999 in 99, pages 173–186, 1999.

[20] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–356,
2019.

	1 Introduction
	2 A simple consensus problem
	2.1 Exercises

	3 The formal framework
	3.1 Processors
	3.2 Message delays
	3.3 Faults
	3.4 Protocols and executions
	3.5 Signatures
	3.6 The research programme

	4 Byzantine Agreement and Byzantine Broadcast
	5 The lock-step model with signatures
	5.1 The Dolev-Strong protocol
	5.1.1 Informal discussion: why isn't it trivial?
	5.1.2 A formal description of the protocol
	5.1.3 The verification
	5.1.4 Making the protocol more efficient
	5.1.5 Why do we need other protocols for BB/BA?
	5.1.6 Exercises

	5.2 Proving f+1 rounds of communication are necessary
	5.2.1 Defining runs as partial executions
	5.2.2 Indistinguishable runs and executions
	5.2.3 Univalent and bivalent runs
	5.2.4 The proof of Theorem 5.2
	5.2.5 Exercises

	5.3 Quadratic communication is necessary
	5.3.1 Exercises

	6 The lock-step model without signatures
	6.1 The proof of Fischer, Lynch and Merritt
	6.1.1 A revised communication model
	6.1.2 The case n=3, f=1 for the revised communication model
	6.1.3 Back to the standard setup
	6.1.4 The proof for general n

	6.2 The Phase-King protocol
	6.2.1 The Gradecast protocol
	6.2.2 Introducing tie-breaking
	6.2.3 The formal specification
	6.2.4 The verification
	6.2.5 Important takeaways

	7 State Machine Replication
	7.1 Total Order Broadcast
	7.2 When is TOB solvable?
	7.3 Defining State Machine Replication
	7.4 When is SMR solvable?
	7.5 Reductions between SMR and BA/BB
	7.6 Exercises

	8 The asynchronous and partially synchronous models
	8.1 The asynchronous model
	8.2 Deterministic consensus is not possible in asynchrony
	8.2.1 k-runs and pivots
	8.2.2 The proof of Theorem 8.1

	8.3 Defining the partially synchronous model
	8.4 When is consensus possible in partial synchrony?
	8.5 Exercises

	9 Tendermint
	9.1 Preliminary techniques
	9.1.1 Building `blockchains' with collision-free hash functions
	9.1.2 Quorum intersection arguments

	9.2 Tendermint with synchronised clocks
	9.2.1 A simple (but failed) attempt
	9.2.2 Using two stages of voting (informal analysis)
	9.2.3 The formal specification
	9.2.4 Verifying Consistency and Liveness

	9.3 Pipelined Tendermint
	9.3.1 Verifying Pipelined Tendermint

	9.4 Tendermint without synchronised clocks
	9.4.1 The intuition
	9.4.2 The formal specification
	9.4.3 Verifying Consistency and Liveness

	9.5 Tendermint: further analysis
	9.5.1 A design principle
	9.5.2 Quick block proposals in the good case
	9.5.3 Block echoing
	9.5.4 The Mempool
	9.5.5 Threshold signatures
	9.5.6 Random leaders

	9.6 Exercises

	10 SMR metrics
	10.1 Complexity metrics for SMR
	10.1.1 Latency for SMR protocols
	10.1.2 Message and communication complexity for SMR protocols
	10.1.3 Lower bounds
	10.1.4 How to weigh these metrics?

	10.2 Defining the Mempool task and MSMR
	10.2.1 Defining the Mempool task
	10.2.2 Metrics for mempool protocols
	10.2.3 Lower bounds for Mempool metrics

	10.3 Mempool-SMR (MSMR)
	10.3.1 Lower bounds for MSMR

	10.4 Analysing efficiency for Tendermint
	10.5 Exercises

	11 PBFT's view-change mechanism
	11.1 PBFT's view changes: the intuition
	11.2 PBFT's view changes: formal treatment
	11.2.1 Streamlined PBFT: the formal specification
	11.2.2 Streamlined PBFT: verifying Consistency and Liveness

	11.3 Optimistic responsiveness
	11.4 Comparing performance for PBFT/Tendermint view changes
	11.4.1 Communication complexity
	11.4.2 Comparing optimistic responsiveness

	11.5 The original PBFT
	11.6 Exercises

	12 Using oracles to model cryptographic primitives
	12.1 Modifying the state-transition-diagram model
	12.2 Oracle examples
	12.2.1 Modelling a threshold signature scheme
	12.2.2 Modelling a CRS
	12.2.3 Modelling a common coin

	13 Hotstuff
	13.1 Extractable SMR
	13.2 The intuition behind Hotstuff
	13.2.1 Why three stages of voting?
	13.2.2 Achieving linear complexity per view

	13.3 Hotstuff: the formal specification
	13.4 Hotstuff: the analysis
	13.4.1 Consistency and Liveness
	13.4.2 Strong optimistic responsiveness
	13.4.3 Further considerations

	13.5 Exercises

	14 View synchronisation protocols
	15 Protocols for asynchrony
	16 Combining erasure codes with Reliable Broadcast
	17 Payment systems
	18 DAG-based protocols
	19 Accountability
	20 Recovery
	21 Player reconfiguration protocols
	22 The Pipes model for latency and throughput analysis
	A Communication complexity for the crash-fault-model
	B Recursive Phase-King
	C Bounding complexity for Extractable BA
	Bibliography

