The Turing degree of a real measures the computational difficulty of producing its binary expansion. Since Turing degrees are tailsets, it follows from Kolmogorov’s 0-1 law that for any property which may or may not be satisfied by any given Turing degree, the satisfying class will either be of Lebesgue measure 0 or 1, so long as it is measurable. So either the * typical * degree satisfies the property, or else the typical degree satisfies its negation. Further, there is then some level of randomness sufficient to ensure typicality in this regard. In this paper, we prove results in a new programme of research which aims to establish the (order theoretically) definable properties of the typical Turing degree.

**The typical Turing degree**, with Barmpalias and Day, *Proceedings of the London Mathematical Society* (2014) 109 (1). pp. 1-39, pdf.

### Like this:

Like Loading...

*Related*